Loading…

Lubricating Oil and Fuel Contributions To Particulate Matter Emissions from Light-Duty Gasoline and Heavy-Duty Diesel Vehicles

Size-resolved particulate matter emissions from heavy-duty diesel vehicles (HDDVs) and light-duty gasoline vehicles (LDGVs) operated under realistic driving cycles were analyzed for elemental carbon (EC), organic carbon (OC), hopanes, steranes, and polycyclic aromatic hydrocarbons. Measured hopane a...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2008-01, Vol.42 (1), p.235-242
Main Authors: Kleeman, Michael J, Riddle, Sarah G, Robert, Michael A, Jakober, Chris A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Size-resolved particulate matter emissions from heavy-duty diesel vehicles (HDDVs) and light-duty gasoline vehicles (LDGVs) operated under realistic driving cycles were analyzed for elemental carbon (EC), organic carbon (OC), hopanes, steranes, and polycyclic aromatic hydrocarbons. Measured hopane and sterane size distributions did not match the total carbon size distribution in most cases, suggesting that lubricating oil was not the dominant source of particulate carbon in the vehicle exhaust. A regression analysis using 17α(H)-21β(H)-29-norhopane as a tracer for lubricating oil and benzo[ghi]perylene as a tracer for gasoline showed that gasoline fuel and lubricating oil both make significant contributions to particulate EC and OC emissions from LDGVs. A similar regression analysis performed using 17α(H)-21β(H)-29-norhopane as a tracer for lubricating oil and flouranthene as a tracer for diesel fuel was able to explain the size distribution of particulate EC and OC emissions from HDDVs. The analysis showed that EC emitted from all HDDVs operated under relatively high load conditions was dominated by diesel fuel contributions with little EC attributed to lubricating oil. Particulate OC emitted from HDDVs was more evenly apportioned between fuel and oil contributions. EC emitted from LDGVs operated under fuel-rich conditions was dominated by gasoline fuel contributions. OC emitted from visibly smoking LDGVs was mostly associated with lubricating oil, but OC emitted from all other categories of LDGVs was dominated by gasoline fuel. The current study clearly illustrates that fuel and lubricating oil make separate and distinct contributions to particulate matter emissions from motor vehicles. These particles should be tracked separately during ambient source apportionment studies since the atmospheric evolution and ultimate health effects of these particles may be different. The source profiles for fuel and lubricating oil contributions to EC and OC emissions derived in this study provide a foundation for future source apportionment calculations.
ISSN:0013-936X
1520-5851
DOI:10.1021/es071054c