Loading…

The glycolipid transfer protein (GLTP) domain of phosphoinositol 4-phosphate adaptor protein-2 (FAPP2): Structure drives preference for simple neutral glycosphingolipids

Phosphoinositol 4-phosphate adaptor protein-2 (FAPP2) plays a key role in glycosphingolipid (GSL) production using its C-terminal domain to transport newly synthesized glucosylceramide away from the cytosol-facing glucosylceramide synthase in the cis-Golgi for further anabolic processing. Structural...

Full description

Saved in:
Bibliographic Details
Published in:Biochimica et biophysica acta 2013-02, Vol.1831 (2), p.417-427
Main Authors: Kamlekar, Ravi Kanth, Simanshu, Dhirendra K., Gao, Yong-guang, Kenoth, Roopa, Pike, Helen M., Prendergast, Franklyn G., Malinina, Lucy, Molotkovsky, Julian G., Venyaminov, Sergei Yu, Patel, Dinshaw J., Brown, Rhoderick E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c586t-82f5ded2ea22e9a189282492adc73f5beefdc59cd378fffbeb3385dbaf31198f3
cites cdi_FETCH-LOGICAL-c586t-82f5ded2ea22e9a189282492adc73f5beefdc59cd378fffbeb3385dbaf31198f3
container_end_page 427
container_issue 2
container_start_page 417
container_title Biochimica et biophysica acta
container_volume 1831
creator Kamlekar, Ravi Kanth
Simanshu, Dhirendra K.
Gao, Yong-guang
Kenoth, Roopa
Pike, Helen M.
Prendergast, Franklyn G.
Malinina, Lucy
Molotkovsky, Julian G.
Venyaminov, Sergei Yu
Patel, Dinshaw J.
Brown, Rhoderick E.
description Phosphoinositol 4-phosphate adaptor protein-2 (FAPP2) plays a key role in glycosphingolipid (GSL) production using its C-terminal domain to transport newly synthesized glucosylceramide away from the cytosol-facing glucosylceramide synthase in the cis-Golgi for further anabolic processing. Structural homology modeling against human glycolipid transfer protein (GLTP) predicts a GLTP-fold for FAPP2 C-terminal domain, but no experimental support exists to warrant inclusion in the GLTP superfamily. Here, the biophysical properties and glycolipid transfer specificity of FAPP2-C-terminal domain have been characterized and compared with other established GLTP-folds. Experimental evidence for a GLTP-fold includes: i) far-UV circular dichroism (CD) showing secondary structure with high alpha-helix content and a low thermally-induced unfolding transition (~41°C); ii) near-UV-CD indicating only subtle tertiary conformational change before/after interaction with membranes containing/lacking glycolipid; iii) Red-shifted tryptophan (Trp) emission wavelength maximum (λmax~352nm) for apo-FAPP2-C-terminal domain consistent with surface exposed intrinsic Trp residues; iv) ‘signature’ GLTP-fold Trp fluorescence response, i.e., intensity decrease (~30%) accompanied by strongly blue-shifted λmax (~14nm) upon interaction with membranes containing glycolipid, supporting direct involvement of Trp in glycolipid binding and enabling estimation of partitioning affinities. A structurally-based preference for other simple uncharged GSLs, in addition to glucosylceramide, makes human FAPP2-GLTP more similar to fungal HET-C2 than to plant AtGLTP1 (glucosylceramide-specific) or to broadly GSL-selective human GLTP. These findings along with the distinct mRNA exon/intron organizations originating from single-copy genes on separate human chromosomes suggest adaptive evolutionary divergence by these two GLTP-folds. ► FAPP2 enables glycosphingolipid synthesis in the Golgi by transfer of glucosylceramide. ► FAPP2 contains a modified GLTP-fold that can also transfer other neutral glycosphingolipids. ► Glycolipid selectivity of FAPP2-GLTP is more focused than human GLTP. ► Glycolipid compartmentation appears to mute evolutionary selection pressure and divergence.
doi_str_mv 10.1016/j.bbalip.2012.10.010
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2000096760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1388198112002429</els_id><sourcerecordid>1273118659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-82f5ded2ea22e9a189282492adc73f5beefdc59cd378fffbeb3385dbaf31198f3</originalsourceid><addsrcrecordid>eNqFUt2O1CAYbYzG_dE3MMrl7EXHAqWlXphsNu5qMomT7Ow1ofAxw6RTKtBJ9pF8S2m6O-qNkhDg6zmHw9eTZe9wscQFrj7ul20rOzssSYFJKi0LXLzIzjGvm5xUmL9Me8p5jhuOz7KLEPZFgRml7HV2RihmTYnL8-znZgdo2z0ql6SsRtHLPhjwaPAugu3R4m61WV8h7Q4ynZxBw86FNG3vgo2uQ2U-V2QEJLUcojuRc4IWt9frNbn6hO6jH1UcPSDt7RFCwkC6B3oFyCRKsIehA9TDmCx0s6Wkavvt7Cy8yV4Z2QV4-7ReZg-3XzY3X_PV97tvN9erXDFexZwTwzRoApIQaCTmDeGkbIjUqqaGtQBGK9YoTWtujGmhpZQz3UpDcWqVoZfZ51l3GNsDaAX9ZEgM3h6kfxROWvH3l97uxNYdBa1YyWiZBBZPAt79GCFEcbBBQdfJHtwYBCnSaKq6Kv4LxaROrnjFmgQtZ6jyLoTUu5MjXIgpEGIv5kCIKRBTNQUi0d7_-ZoT6TkBCfBhBhjphNx6G8TDfVKoJpdVw-rfDYHU9aMFL4Ky03_T1oOKQjv7bw-_AGVE1ys</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273118659</pqid></control><display><type>article</type><title>The glycolipid transfer protein (GLTP) domain of phosphoinositol 4-phosphate adaptor protein-2 (FAPP2): Structure drives preference for simple neutral glycosphingolipids</title><source>ScienceDirect Journals</source><creator>Kamlekar, Ravi Kanth ; Simanshu, Dhirendra K. ; Gao, Yong-guang ; Kenoth, Roopa ; Pike, Helen M. ; Prendergast, Franklyn G. ; Malinina, Lucy ; Molotkovsky, Julian G. ; Venyaminov, Sergei Yu ; Patel, Dinshaw J. ; Brown, Rhoderick E.</creator><creatorcontrib>Kamlekar, Ravi Kanth ; Simanshu, Dhirendra K. ; Gao, Yong-guang ; Kenoth, Roopa ; Pike, Helen M. ; Prendergast, Franklyn G. ; Malinina, Lucy ; Molotkovsky, Julian G. ; Venyaminov, Sergei Yu ; Patel, Dinshaw J. ; Brown, Rhoderick E.</creatorcontrib><description>Phosphoinositol 4-phosphate adaptor protein-2 (FAPP2) plays a key role in glycosphingolipid (GSL) production using its C-terminal domain to transport newly synthesized glucosylceramide away from the cytosol-facing glucosylceramide synthase in the cis-Golgi for further anabolic processing. Structural homology modeling against human glycolipid transfer protein (GLTP) predicts a GLTP-fold for FAPP2 C-terminal domain, but no experimental support exists to warrant inclusion in the GLTP superfamily. Here, the biophysical properties and glycolipid transfer specificity of FAPP2-C-terminal domain have been characterized and compared with other established GLTP-folds. Experimental evidence for a GLTP-fold includes: i) far-UV circular dichroism (CD) showing secondary structure with high alpha-helix content and a low thermally-induced unfolding transition (~41°C); ii) near-UV-CD indicating only subtle tertiary conformational change before/after interaction with membranes containing/lacking glycolipid; iii) Red-shifted tryptophan (Trp) emission wavelength maximum (λmax~352nm) for apo-FAPP2-C-terminal domain consistent with surface exposed intrinsic Trp residues; iv) ‘signature’ GLTP-fold Trp fluorescence response, i.e., intensity decrease (~30%) accompanied by strongly blue-shifted λmax (~14nm) upon interaction with membranes containing glycolipid, supporting direct involvement of Trp in glycolipid binding and enabling estimation of partitioning affinities. A structurally-based preference for other simple uncharged GSLs, in addition to glucosylceramide, makes human FAPP2-GLTP more similar to fungal HET-C2 than to plant AtGLTP1 (glucosylceramide-specific) or to broadly GSL-selective human GLTP. These findings along with the distinct mRNA exon/intron organizations originating from single-copy genes on separate human chromosomes suggest adaptive evolutionary divergence by these two GLTP-folds. ► FAPP2 enables glycosphingolipid synthesis in the Golgi by transfer of glucosylceramide. ► FAPP2 contains a modified GLTP-fold that can also transfer other neutral glycosphingolipids. ► Glycolipid selectivity of FAPP2-GLTP is more focused than human GLTP. ► Glycolipid compartmentation appears to mute evolutionary selection pressure and divergence.</description><identifier>ISSN: 1388-1981</identifier><identifier>ISSN: 0006-3002</identifier><identifier>EISSN: 1879-2618</identifier><identifier>DOI: 10.1016/j.bbalip.2012.10.010</identifier><identifier>PMID: 23159414</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adaptor Proteins, Signal Transducing - chemistry ; Adaptor Proteins, Signal Transducing - metabolism ; Amino Acid Sequence ; Carrier Proteins - chemistry ; Carrier Proteins - metabolism ; chromosomes ; Circular Dichroism ; Divergent evolution ; exons ; fluorescence ; fungi ; genes ; GLTP superfamily ; Glycosphingolipid binding and transfer ; glycosphingolipids ; Glycosphingolipids - metabolism ; humans ; introns ; Membrane interaction ; messenger RNA ; Molecular Sequence Data ; Near-UV and far-UV circular dichroism ; Sequence Homology, Amino Acid ; Spectrometry, Fluorescence ; Spectrophotometry, Ultraviolet ; tryptophan ; Tryptophan fluorescence ; wavelengths</subject><ispartof>Biochimica et biophysica acta, 2013-02, Vol.1831 (2), p.417-427</ispartof><rights>2012 Elsevier B.V.</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><rights>2012 Elsevier B.V. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-82f5ded2ea22e9a189282492adc73f5beefdc59cd378fffbeb3385dbaf31198f3</citedby><cites>FETCH-LOGICAL-c586t-82f5ded2ea22e9a189282492adc73f5beefdc59cd378fffbeb3385dbaf31198f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23159414$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamlekar, Ravi Kanth</creatorcontrib><creatorcontrib>Simanshu, Dhirendra K.</creatorcontrib><creatorcontrib>Gao, Yong-guang</creatorcontrib><creatorcontrib>Kenoth, Roopa</creatorcontrib><creatorcontrib>Pike, Helen M.</creatorcontrib><creatorcontrib>Prendergast, Franklyn G.</creatorcontrib><creatorcontrib>Malinina, Lucy</creatorcontrib><creatorcontrib>Molotkovsky, Julian G.</creatorcontrib><creatorcontrib>Venyaminov, Sergei Yu</creatorcontrib><creatorcontrib>Patel, Dinshaw J.</creatorcontrib><creatorcontrib>Brown, Rhoderick E.</creatorcontrib><title>The glycolipid transfer protein (GLTP) domain of phosphoinositol 4-phosphate adaptor protein-2 (FAPP2): Structure drives preference for simple neutral glycosphingolipids</title><title>Biochimica et biophysica acta</title><addtitle>Biochim Biophys Acta</addtitle><description>Phosphoinositol 4-phosphate adaptor protein-2 (FAPP2) plays a key role in glycosphingolipid (GSL) production using its C-terminal domain to transport newly synthesized glucosylceramide away from the cytosol-facing glucosylceramide synthase in the cis-Golgi for further anabolic processing. Structural homology modeling against human glycolipid transfer protein (GLTP) predicts a GLTP-fold for FAPP2 C-terminal domain, but no experimental support exists to warrant inclusion in the GLTP superfamily. Here, the biophysical properties and glycolipid transfer specificity of FAPP2-C-terminal domain have been characterized and compared with other established GLTP-folds. Experimental evidence for a GLTP-fold includes: i) far-UV circular dichroism (CD) showing secondary structure with high alpha-helix content and a low thermally-induced unfolding transition (~41°C); ii) near-UV-CD indicating only subtle tertiary conformational change before/after interaction with membranes containing/lacking glycolipid; iii) Red-shifted tryptophan (Trp) emission wavelength maximum (λmax~352nm) for apo-FAPP2-C-terminal domain consistent with surface exposed intrinsic Trp residues; iv) ‘signature’ GLTP-fold Trp fluorescence response, i.e., intensity decrease (~30%) accompanied by strongly blue-shifted λmax (~14nm) upon interaction with membranes containing glycolipid, supporting direct involvement of Trp in glycolipid binding and enabling estimation of partitioning affinities. A structurally-based preference for other simple uncharged GSLs, in addition to glucosylceramide, makes human FAPP2-GLTP more similar to fungal HET-C2 than to plant AtGLTP1 (glucosylceramide-specific) or to broadly GSL-selective human GLTP. These findings along with the distinct mRNA exon/intron organizations originating from single-copy genes on separate human chromosomes suggest adaptive evolutionary divergence by these two GLTP-folds. ► FAPP2 enables glycosphingolipid synthesis in the Golgi by transfer of glucosylceramide. ► FAPP2 contains a modified GLTP-fold that can also transfer other neutral glycosphingolipids. ► Glycolipid selectivity of FAPP2-GLTP is more focused than human GLTP. ► Glycolipid compartmentation appears to mute evolutionary selection pressure and divergence.</description><subject>Adaptor Proteins, Signal Transducing - chemistry</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Carrier Proteins - chemistry</subject><subject>Carrier Proteins - metabolism</subject><subject>chromosomes</subject><subject>Circular Dichroism</subject><subject>Divergent evolution</subject><subject>exons</subject><subject>fluorescence</subject><subject>fungi</subject><subject>genes</subject><subject>GLTP superfamily</subject><subject>Glycosphingolipid binding and transfer</subject><subject>glycosphingolipids</subject><subject>Glycosphingolipids - metabolism</subject><subject>humans</subject><subject>introns</subject><subject>Membrane interaction</subject><subject>messenger RNA</subject><subject>Molecular Sequence Data</subject><subject>Near-UV and far-UV circular dichroism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Spectrometry, Fluorescence</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>tryptophan</subject><subject>Tryptophan fluorescence</subject><subject>wavelengths</subject><issn>1388-1981</issn><issn>0006-3002</issn><issn>1879-2618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFUt2O1CAYbYzG_dE3MMrl7EXHAqWlXphsNu5qMomT7Ow1ofAxw6RTKtBJ9pF8S2m6O-qNkhDg6zmHw9eTZe9wscQFrj7ul20rOzssSYFJKi0LXLzIzjGvm5xUmL9Me8p5jhuOz7KLEPZFgRml7HV2RihmTYnL8-znZgdo2z0ql6SsRtHLPhjwaPAugu3R4m61WV8h7Q4ynZxBw86FNG3vgo2uQ2U-V2QEJLUcojuRc4IWt9frNbn6hO6jH1UcPSDt7RFCwkC6B3oFyCRKsIehA9TDmCx0s6Wkavvt7Cy8yV4Z2QV4-7ReZg-3XzY3X_PV97tvN9erXDFexZwTwzRoApIQaCTmDeGkbIjUqqaGtQBGK9YoTWtujGmhpZQz3UpDcWqVoZfZ51l3GNsDaAX9ZEgM3h6kfxROWvH3l97uxNYdBa1YyWiZBBZPAt79GCFEcbBBQdfJHtwYBCnSaKq6Kv4LxaROrnjFmgQtZ6jyLoTUu5MjXIgpEGIv5kCIKRBTNQUi0d7_-ZoT6TkBCfBhBhjphNx6G8TDfVKoJpdVw-rfDYHU9aMFL4Ky03_T1oOKQjv7bw-_AGVE1ys</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Kamlekar, Ravi Kanth</creator><creator>Simanshu, Dhirendra K.</creator><creator>Gao, Yong-guang</creator><creator>Kenoth, Roopa</creator><creator>Pike, Helen M.</creator><creator>Prendergast, Franklyn G.</creator><creator>Malinina, Lucy</creator><creator>Molotkovsky, Julian G.</creator><creator>Venyaminov, Sergei Yu</creator><creator>Patel, Dinshaw J.</creator><creator>Brown, Rhoderick E.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130201</creationdate><title>The glycolipid transfer protein (GLTP) domain of phosphoinositol 4-phosphate adaptor protein-2 (FAPP2): Structure drives preference for simple neutral glycosphingolipids</title><author>Kamlekar, Ravi Kanth ; Simanshu, Dhirendra K. ; Gao, Yong-guang ; Kenoth, Roopa ; Pike, Helen M. ; Prendergast, Franklyn G. ; Malinina, Lucy ; Molotkovsky, Julian G. ; Venyaminov, Sergei Yu ; Patel, Dinshaw J. ; Brown, Rhoderick E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-82f5ded2ea22e9a189282492adc73f5beefdc59cd378fffbeb3385dbaf31198f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptor Proteins, Signal Transducing - chemistry</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Carrier Proteins - chemistry</topic><topic>Carrier Proteins - metabolism</topic><topic>chromosomes</topic><topic>Circular Dichroism</topic><topic>Divergent evolution</topic><topic>exons</topic><topic>fluorescence</topic><topic>fungi</topic><topic>genes</topic><topic>GLTP superfamily</topic><topic>Glycosphingolipid binding and transfer</topic><topic>glycosphingolipids</topic><topic>Glycosphingolipids - metabolism</topic><topic>humans</topic><topic>introns</topic><topic>Membrane interaction</topic><topic>messenger RNA</topic><topic>Molecular Sequence Data</topic><topic>Near-UV and far-UV circular dichroism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Spectrometry, Fluorescence</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>tryptophan</topic><topic>Tryptophan fluorescence</topic><topic>wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamlekar, Ravi Kanth</creatorcontrib><creatorcontrib>Simanshu, Dhirendra K.</creatorcontrib><creatorcontrib>Gao, Yong-guang</creatorcontrib><creatorcontrib>Kenoth, Roopa</creatorcontrib><creatorcontrib>Pike, Helen M.</creatorcontrib><creatorcontrib>Prendergast, Franklyn G.</creatorcontrib><creatorcontrib>Malinina, Lucy</creatorcontrib><creatorcontrib>Molotkovsky, Julian G.</creatorcontrib><creatorcontrib>Venyaminov, Sergei Yu</creatorcontrib><creatorcontrib>Patel, Dinshaw J.</creatorcontrib><creatorcontrib>Brown, Rhoderick E.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochimica et biophysica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamlekar, Ravi Kanth</au><au>Simanshu, Dhirendra K.</au><au>Gao, Yong-guang</au><au>Kenoth, Roopa</au><au>Pike, Helen M.</au><au>Prendergast, Franklyn G.</au><au>Malinina, Lucy</au><au>Molotkovsky, Julian G.</au><au>Venyaminov, Sergei Yu</au><au>Patel, Dinshaw J.</au><au>Brown, Rhoderick E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The glycolipid transfer protein (GLTP) domain of phosphoinositol 4-phosphate adaptor protein-2 (FAPP2): Structure drives preference for simple neutral glycosphingolipids</atitle><jtitle>Biochimica et biophysica acta</jtitle><addtitle>Biochim Biophys Acta</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>1831</volume><issue>2</issue><spage>417</spage><epage>427</epage><pages>417-427</pages><issn>1388-1981</issn><issn>0006-3002</issn><eissn>1879-2618</eissn><abstract>Phosphoinositol 4-phosphate adaptor protein-2 (FAPP2) plays a key role in glycosphingolipid (GSL) production using its C-terminal domain to transport newly synthesized glucosylceramide away from the cytosol-facing glucosylceramide synthase in the cis-Golgi for further anabolic processing. Structural homology modeling against human glycolipid transfer protein (GLTP) predicts a GLTP-fold for FAPP2 C-terminal domain, but no experimental support exists to warrant inclusion in the GLTP superfamily. Here, the biophysical properties and glycolipid transfer specificity of FAPP2-C-terminal domain have been characterized and compared with other established GLTP-folds. Experimental evidence for a GLTP-fold includes: i) far-UV circular dichroism (CD) showing secondary structure with high alpha-helix content and a low thermally-induced unfolding transition (~41°C); ii) near-UV-CD indicating only subtle tertiary conformational change before/after interaction with membranes containing/lacking glycolipid; iii) Red-shifted tryptophan (Trp) emission wavelength maximum (λmax~352nm) for apo-FAPP2-C-terminal domain consistent with surface exposed intrinsic Trp residues; iv) ‘signature’ GLTP-fold Trp fluorescence response, i.e., intensity decrease (~30%) accompanied by strongly blue-shifted λmax (~14nm) upon interaction with membranes containing glycolipid, supporting direct involvement of Trp in glycolipid binding and enabling estimation of partitioning affinities. A structurally-based preference for other simple uncharged GSLs, in addition to glucosylceramide, makes human FAPP2-GLTP more similar to fungal HET-C2 than to plant AtGLTP1 (glucosylceramide-specific) or to broadly GSL-selective human GLTP. These findings along with the distinct mRNA exon/intron organizations originating from single-copy genes on separate human chromosomes suggest adaptive evolutionary divergence by these two GLTP-folds. ► FAPP2 enables glycosphingolipid synthesis in the Golgi by transfer of glucosylceramide. ► FAPP2 contains a modified GLTP-fold that can also transfer other neutral glycosphingolipids. ► Glycolipid selectivity of FAPP2-GLTP is more focused than human GLTP. ► Glycolipid compartmentation appears to mute evolutionary selection pressure and divergence.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>23159414</pmid><doi>10.1016/j.bbalip.2012.10.010</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1388-1981
ispartof Biochimica et biophysica acta, 2013-02, Vol.1831 (2), p.417-427
issn 1388-1981
0006-3002
1879-2618
language eng
recordid cdi_proquest_miscellaneous_2000096760
source ScienceDirect Journals
subjects Adaptor Proteins, Signal Transducing - chemistry
Adaptor Proteins, Signal Transducing - metabolism
Amino Acid Sequence
Carrier Proteins - chemistry
Carrier Proteins - metabolism
chromosomes
Circular Dichroism
Divergent evolution
exons
fluorescence
fungi
genes
GLTP superfamily
Glycosphingolipid binding and transfer
glycosphingolipids
Glycosphingolipids - metabolism
humans
introns
Membrane interaction
messenger RNA
Molecular Sequence Data
Near-UV and far-UV circular dichroism
Sequence Homology, Amino Acid
Spectrometry, Fluorescence
Spectrophotometry, Ultraviolet
tryptophan
Tryptophan fluorescence
wavelengths
title The glycolipid transfer protein (GLTP) domain of phosphoinositol 4-phosphate adaptor protein-2 (FAPP2): Structure drives preference for simple neutral glycosphingolipids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20glycolipid%20transfer%20protein%20(GLTP)%20domain%20of%20phosphoinositol%204-phosphate%20adaptor%20protein-2%20(FAPP2):%20Structure%20drives%20preference%20for%20simple%20neutral%20glycosphingolipids&rft.jtitle=Biochimica%20et%20biophysica%20acta&rft.au=Kamlekar,%20Ravi%20Kanth&rft.date=2013-02-01&rft.volume=1831&rft.issue=2&rft.spage=417&rft.epage=427&rft.pages=417-427&rft.issn=1388-1981&rft.eissn=1879-2618&rft_id=info:doi/10.1016/j.bbalip.2012.10.010&rft_dat=%3Cproquest_pubme%3E1273118659%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c586t-82f5ded2ea22e9a189282492adc73f5beefdc59cd378fffbeb3385dbaf31198f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1273118659&rft_id=info:pmid/23159414&rfr_iscdi=true