Loading…

Knowledge extraction from a nitrification denitrification wastewater treatment plant using SOM-NG algorithm

SOM-NG is a hybrid algorithm that is able to carry out visualization of process data, nonlinear function approximation, classification and clustering. The supervised version of SOM-NG produces a new type of 2D lattices called gradient planes which are useful to determine the dynamics of a target var...

Full description

Saved in:
Bibliographic Details
Published in:Environmental technology 2017-06, Vol.38 (12), p.1548-1553
Main Authors: Machón-González, Iván, Rodríguez-Iglesias, Jesús, López-García, Hilario, Castrillón-Peláez, Leonor, Marañón-Maison, Elena
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-346099fee33556aaa8449a12b6c788d8d771920a0bcf3e18105cb2f686c5a8063
cites cdi_FETCH-LOGICAL-c427t-346099fee33556aaa8449a12b6c788d8d771920a0bcf3e18105cb2f686c5a8063
container_end_page 1553
container_issue 12
container_start_page 1548
container_title Environmental technology
container_volume 38
creator Machón-González, Iván
Rodríguez-Iglesias, Jesús
López-García, Hilario
Castrillón-Peláez, Leonor
Marañón-Maison, Elena
description SOM-NG is a hybrid algorithm that is able to carry out visualization of process data, nonlinear function approximation, classification and clustering. The supervised version of SOM-NG produces a new type of 2D lattices called gradient planes which are useful to determine the dynamics of a target variable according to the remaining training variables. In this way, it is an interesting tool for data mining in order to extract knowledge from databases for nonlinear systems. The main objective of this work is to analyze data from an industrial wastewater treatment plant using SOM-NG algorithm in order to investigate relationships between the process variables. The data used proceeds from a biological wastewater treatment plant. This plant is based on an activated sludge treatment including nitrification and denitrification processes. A direct relation between the nitrification efficiency and the operating temperature was found, and also between the ammonia loading rate and the nitrification denitrification efficiency.
doi_str_mv 10.1080/09593330.2016.1237551
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_2000445236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1901734519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-346099fee33556aaa8449a12b6c788d8d771920a0bcf3e18105cb2f686c5a8063</originalsourceid><addsrcrecordid>eNp9kU1vFDEMhiMEotvCTwCNxIXLLPn-uIEqaBGFHgCJW-TNJEvKzGSbZLT03zPDbpHgwMWWrcf2K78IPSN4TbDGr7ARhjGG1xQTuSaUKSHIA7QiXJmWa_XtIVotTLtAJ-i0lBuMqRbaPEYnVElNiCQr9OPDmPa977a-8T9rBldjGpuQ09BAM8aaY4gOfjc7_3e9h1L9HqrPTc0e6uDH2ux6mONU4rhtPl9_bD9dNNBvU471-_AEPQrQF__0mM_Q13dvv5xftlfXF-_P31y1jlNVW8YlNiZ4z5gQEgA05wYI3UintO50pxQxFAPeuMA80QQLt6FBaukEaCzZGXp52LvL6XbypdohFuf7WZpPU7EUY8y5oGxBX_yD3qQpj7M6SwwminFBzEyJA-VyKiX7YHc5DpDvLMF2ccPeu2EXN-zRjXnu-XH7tBl892fq_v0z8PoAxDGkPMA-5b6zFe76lEOG0cVi2f9v_AKBl5mX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901734519</pqid></control><display><type>article</type><title>Knowledge extraction from a nitrification denitrification wastewater treatment plant using SOM-NG algorithm</title><source>Taylor and Francis Science and Technology Collection</source><creator>Machón-González, Iván ; Rodríguez-Iglesias, Jesús ; López-García, Hilario ; Castrillón-Peláez, Leonor ; Marañón-Maison, Elena</creator><creatorcontrib>Machón-González, Iván ; Rodríguez-Iglesias, Jesús ; López-García, Hilario ; Castrillón-Peláez, Leonor ; Marañón-Maison, Elena</creatorcontrib><description>SOM-NG is a hybrid algorithm that is able to carry out visualization of process data, nonlinear function approximation, classification and clustering. The supervised version of SOM-NG produces a new type of 2D lattices called gradient planes which are useful to determine the dynamics of a target variable according to the remaining training variables. In this way, it is an interesting tool for data mining in order to extract knowledge from databases for nonlinear systems. The main objective of this work is to analyze data from an industrial wastewater treatment plant using SOM-NG algorithm in order to investigate relationships between the process variables. The data used proceeds from a biological wastewater treatment plant. This plant is based on an activated sludge treatment including nitrification and denitrification processes. A direct relation between the nitrification efficiency and the operating temperature was found, and also between the ammonia loading rate and the nitrification denitrification efficiency.</description><identifier>ISSN: 0959-3330</identifier><identifier>ISSN: 1479-487X</identifier><identifier>EISSN: 1479-487X</identifier><identifier>DOI: 10.1080/09593330.2016.1237551</identifier><identifier>PMID: 27681161</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>Activated sludge ; Algorithms ; Ammonia ; Biological wastewater treatment ; Classification ; Clustering ; coke wastewater ; Data mining ; Data processing ; Denitrification ; Dynamical systems ; environmental technology ; Industrial Waste ; Industrial wastes ; Industrial wastewater ; Industrial wastewater treatment ; Lattices ; Load distribution ; Loading rate ; neural gas ; Nitrification ; Nonlinear dynamics ; Nonlinear systems ; Operating temperature ; Oxygen - metabolism ; Planes ; Plant extracts ; Process variables ; Self organizing map ; Sludge ; Sludge treatment ; temperature ; Temperature effects ; Waste Disposal, Fluid - methods ; Waste Water ; Wastewater treatment ; Wastewater treatment plants ; Water treatment plants</subject><ispartof>Environmental technology, 2017-06, Vol.38 (12), p.1548-1553</ispartof><rights>2016 Informa UK Limited, trading as Taylor &amp; Francis Group 2016</rights><rights>2016 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-346099fee33556aaa8449a12b6c788d8d771920a0bcf3e18105cb2f686c5a8063</citedby><cites>FETCH-LOGICAL-c427t-346099fee33556aaa8449a12b6c788d8d771920a0bcf3e18105cb2f686c5a8063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27681161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Machón-González, Iván</creatorcontrib><creatorcontrib>Rodríguez-Iglesias, Jesús</creatorcontrib><creatorcontrib>López-García, Hilario</creatorcontrib><creatorcontrib>Castrillón-Peláez, Leonor</creatorcontrib><creatorcontrib>Marañón-Maison, Elena</creatorcontrib><title>Knowledge extraction from a nitrification denitrification wastewater treatment plant using SOM-NG algorithm</title><title>Environmental technology</title><addtitle>Environ Technol</addtitle><description>SOM-NG is a hybrid algorithm that is able to carry out visualization of process data, nonlinear function approximation, classification and clustering. The supervised version of SOM-NG produces a new type of 2D lattices called gradient planes which are useful to determine the dynamics of a target variable according to the remaining training variables. In this way, it is an interesting tool for data mining in order to extract knowledge from databases for nonlinear systems. The main objective of this work is to analyze data from an industrial wastewater treatment plant using SOM-NG algorithm in order to investigate relationships between the process variables. The data used proceeds from a biological wastewater treatment plant. This plant is based on an activated sludge treatment including nitrification and denitrification processes. A direct relation between the nitrification efficiency and the operating temperature was found, and also between the ammonia loading rate and the nitrification denitrification efficiency.</description><subject>Activated sludge</subject><subject>Algorithms</subject><subject>Ammonia</subject><subject>Biological wastewater treatment</subject><subject>Classification</subject><subject>Clustering</subject><subject>coke wastewater</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Denitrification</subject><subject>Dynamical systems</subject><subject>environmental technology</subject><subject>Industrial Waste</subject><subject>Industrial wastes</subject><subject>Industrial wastewater</subject><subject>Industrial wastewater treatment</subject><subject>Lattices</subject><subject>Load distribution</subject><subject>Loading rate</subject><subject>neural gas</subject><subject>Nitrification</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Operating temperature</subject><subject>Oxygen - metabolism</subject><subject>Planes</subject><subject>Plant extracts</subject><subject>Process variables</subject><subject>Self organizing map</subject><subject>Sludge</subject><subject>Sludge treatment</subject><subject>temperature</subject><subject>Temperature effects</subject><subject>Waste Disposal, Fluid - methods</subject><subject>Waste Water</subject><subject>Wastewater treatment</subject><subject>Wastewater treatment plants</subject><subject>Water treatment plants</subject><issn>0959-3330</issn><issn>1479-487X</issn><issn>1479-487X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vFDEMhiMEotvCTwCNxIXLLPn-uIEqaBGFHgCJW-TNJEvKzGSbZLT03zPDbpHgwMWWrcf2K78IPSN4TbDGr7ARhjGG1xQTuSaUKSHIA7QiXJmWa_XtIVotTLtAJ-i0lBuMqRbaPEYnVElNiCQr9OPDmPa977a-8T9rBldjGpuQ09BAM8aaY4gOfjc7_3e9h1L9HqrPTc0e6uDH2ux6mONU4rhtPl9_bD9dNNBvU471-_AEPQrQF__0mM_Q13dvv5xftlfXF-_P31y1jlNVW8YlNiZ4z5gQEgA05wYI3UintO50pxQxFAPeuMA80QQLt6FBaukEaCzZGXp52LvL6XbypdohFuf7WZpPU7EUY8y5oGxBX_yD3qQpj7M6SwwminFBzEyJA-VyKiX7YHc5DpDvLMF2ccPeu2EXN-zRjXnu-XH7tBl892fq_v0z8PoAxDGkPMA-5b6zFe76lEOG0cVi2f9v_AKBl5mX</recordid><startdate>20170618</startdate><enddate>20170618</enddate><creator>Machón-González, Iván</creator><creator>Rodríguez-Iglesias, Jesús</creator><creator>López-García, Hilario</creator><creator>Castrillón-Peláez, Leonor</creator><creator>Marañón-Maison, Elena</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20170618</creationdate><title>Knowledge extraction from a nitrification denitrification wastewater treatment plant using SOM-NG algorithm</title><author>Machón-González, Iván ; Rodríguez-Iglesias, Jesús ; López-García, Hilario ; Castrillón-Peláez, Leonor ; Marañón-Maison, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-346099fee33556aaa8449a12b6c788d8d771920a0bcf3e18105cb2f686c5a8063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activated sludge</topic><topic>Algorithms</topic><topic>Ammonia</topic><topic>Biological wastewater treatment</topic><topic>Classification</topic><topic>Clustering</topic><topic>coke wastewater</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Denitrification</topic><topic>Dynamical systems</topic><topic>environmental technology</topic><topic>Industrial Waste</topic><topic>Industrial wastes</topic><topic>Industrial wastewater</topic><topic>Industrial wastewater treatment</topic><topic>Lattices</topic><topic>Load distribution</topic><topic>Loading rate</topic><topic>neural gas</topic><topic>Nitrification</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Operating temperature</topic><topic>Oxygen - metabolism</topic><topic>Planes</topic><topic>Plant extracts</topic><topic>Process variables</topic><topic>Self organizing map</topic><topic>Sludge</topic><topic>Sludge treatment</topic><topic>temperature</topic><topic>Temperature effects</topic><topic>Waste Disposal, Fluid - methods</topic><topic>Waste Water</topic><topic>Wastewater treatment</topic><topic>Wastewater treatment plants</topic><topic>Water treatment plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Machón-González, Iván</creatorcontrib><creatorcontrib>Rodríguez-Iglesias, Jesús</creatorcontrib><creatorcontrib>López-García, Hilario</creatorcontrib><creatorcontrib>Castrillón-Peláez, Leonor</creatorcontrib><creatorcontrib>Marañón-Maison, Elena</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machón-González, Iván</au><au>Rodríguez-Iglesias, Jesús</au><au>López-García, Hilario</au><au>Castrillón-Peláez, Leonor</au><au>Marañón-Maison, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge extraction from a nitrification denitrification wastewater treatment plant using SOM-NG algorithm</atitle><jtitle>Environmental technology</jtitle><addtitle>Environ Technol</addtitle><date>2017-06-18</date><risdate>2017</risdate><volume>38</volume><issue>12</issue><spage>1548</spage><epage>1553</epage><pages>1548-1553</pages><issn>0959-3330</issn><issn>1479-487X</issn><eissn>1479-487X</eissn><abstract>SOM-NG is a hybrid algorithm that is able to carry out visualization of process data, nonlinear function approximation, classification and clustering. The supervised version of SOM-NG produces a new type of 2D lattices called gradient planes which are useful to determine the dynamics of a target variable according to the remaining training variables. In this way, it is an interesting tool for data mining in order to extract knowledge from databases for nonlinear systems. The main objective of this work is to analyze data from an industrial wastewater treatment plant using SOM-NG algorithm in order to investigate relationships between the process variables. The data used proceeds from a biological wastewater treatment plant. This plant is based on an activated sludge treatment including nitrification and denitrification processes. A direct relation between the nitrification efficiency and the operating temperature was found, and also between the ammonia loading rate and the nitrification denitrification efficiency.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>27681161</pmid><doi>10.1080/09593330.2016.1237551</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0959-3330
ispartof Environmental technology, 2017-06, Vol.38 (12), p.1548-1553
issn 0959-3330
1479-487X
1479-487X
language eng
recordid cdi_proquest_miscellaneous_2000445236
source Taylor and Francis Science and Technology Collection
subjects Activated sludge
Algorithms
Ammonia
Biological wastewater treatment
Classification
Clustering
coke wastewater
Data mining
Data processing
Denitrification
Dynamical systems
environmental technology
Industrial Waste
Industrial wastes
Industrial wastewater
Industrial wastewater treatment
Lattices
Load distribution
Loading rate
neural gas
Nitrification
Nonlinear dynamics
Nonlinear systems
Operating temperature
Oxygen - metabolism
Planes
Plant extracts
Process variables
Self organizing map
Sludge
Sludge treatment
temperature
Temperature effects
Waste Disposal, Fluid - methods
Waste Water
Wastewater treatment
Wastewater treatment plants
Water treatment plants
title Knowledge extraction from a nitrification denitrification wastewater treatment plant using SOM-NG algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A53%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge%20extraction%20from%20a%20nitrification%20denitrification%20wastewater%20treatment%20plant%20using%20SOM-NG%20algorithm&rft.jtitle=Environmental%20technology&rft.au=Mach%C3%B3n-Gonz%C3%A1lez,%20Iv%C3%A1n&rft.date=2017-06-18&rft.volume=38&rft.issue=12&rft.spage=1548&rft.epage=1553&rft.pages=1548-1553&rft.issn=0959-3330&rft.eissn=1479-487X&rft_id=info:doi/10.1080/09593330.2016.1237551&rft_dat=%3Cproquest_infor%3E1901734519%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-346099fee33556aaa8449a12b6c788d8d771920a0bcf3e18105cb2f686c5a8063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1901734519&rft_id=info:pmid/27681161&rfr_iscdi=true