Loading…

Sequential thermal dissolution and alkanolyses of extraction residue from Xinghe lignite

Extraction residue (ER) from ultrasonic extraction of Xinghe lignite (XL) was subjected to sequential thermal dissolution (TD) in cyclohexane from 200°C to 320°C and subsequently in benzene, methanol, ethanol, and isopropanol at 320°C. The yields of soluble portions (SPs) in methanol and ethanol are...

Full description

Saved in:
Bibliographic Details
Published in:Fuel processing technology 2017-12, Vol.167, p.425-430
Main Authors: Li, Sheng, Zong, Zhi-Min, Li, Zhan-Ku, Wang, Sheng-Kang, Yang, Zheng, Xu, Mei-Ling, Shi, Chong, Wei, Xian-Yong, Wang, Yu-Gao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-9274ec55e83c482f86ffc93011e9012aa3e44e2e709dc628881ee6894bcdafcc3
cites cdi_FETCH-LOGICAL-c470t-9274ec55e83c482f86ffc93011e9012aa3e44e2e709dc628881ee6894bcdafcc3
container_end_page 430
container_issue
container_start_page 425
container_title Fuel processing technology
container_volume 167
creator Li, Sheng
Zong, Zhi-Min
Li, Zhan-Ku
Wang, Sheng-Kang
Yang, Zheng
Xu, Mei-Ling
Shi, Chong
Wei, Xian-Yong
Wang, Yu-Gao
description Extraction residue (ER) from ultrasonic extraction of Xinghe lignite (XL) was subjected to sequential thermal dissolution (TD) in cyclohexane from 200°C to 320°C and subsequently in benzene, methanol, ethanol, and isopropanol at 320°C. The yields of soluble portions (SPs) in methanol and ethanol are much higher than those in cyclohexane and benzene, and the total SP yield is ca. 48.3%. According to gas chromatography/mass spectrometric analysis, the most abundant group components are arenols in cyclohexane-soluble portion obtained at 290°C and methanol-soluble portion obtained at 320°C, arenes in both cyclohexane- and benzene-soluble portions obtained at 320°C, alkanoates in ethanol-soluble portion obtained at 320°C, and alkenones in isopropanol-soluble portion obtained at 320°C. Anthracene was used as hydrogen acceptor to probe hydrogen transfer (HT) from ER in terms of the formation of 9,10-dihydroanthracene (DHA) and 1,2,3,4-tetrahydroanthracene (THA) during TD. As a result, both DHA and THA were detected in all the SPs except benzene-soluble portion obtained at 320°C and the yields of both DHA and THA increased with raising temperature in cyclohexane, indicating that raising temperature enhances HT from ER to anthracene. Compared to TD in cyclohexane, alkanols, especially isopropanol, enhance the HT more significantly at 320°C. •Most of organic matter in ER was converted into SPs via sequential TD/alkanolyses.•Anthracene was added to the sequential TD/alkanolyses to monitor hydrogen transfer.•Hydrogen transfer significantly proceeded during the ER alkanolyses.
doi_str_mv 10.1016/j.fuproc.2017.07.025
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2000546217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378382017305556</els_id><sourcerecordid>2000546217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-9274ec55e83c482f86ffc93011e9012aa3e44e2e709dc628881ee6894bcdafcc3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Aw8FL166JmnapBdBFv_BggcV9hZiOtnN2iZr0or77c1aTx6EB3OY3zzmPYTOCZ4RTKqrzcwM2-D1jGLCZziJlgdoQgQvck6EOEQTXHCRF4LiY3QS4wZjXJY1n6DlM3wM4Hqr2qxfQ-jSbGyMvh16612mXJOp9l053-4ixMybDL76oPTPNkC0zQCZCb7Lltat1pC1duVsD6foyKg2wtnvnKLXu9uX-UO-eLp_nN8scs047vOacga6LEEUmglqRGWMrgtMCNSYUKUKYAwocFw3uqJCCAJQiZq96UYZrYspuhx9UwEpSexlZ6OGtlUO_BAl3UdlFSU8oRd_0I0fgkvfJYpRXpGK1YliI6WDjzGAkdtgOxV2kmC5r1tu5Fi33NctcRIt09n1eAYp7KeFIKO24DQ0NoDuZePt_wbfiQ2L2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2042761649</pqid></control><display><type>article</type><title>Sequential thermal dissolution and alkanolyses of extraction residue from Xinghe lignite</title><source>ScienceDirect Freedom Collection</source><creator>Li, Sheng ; Zong, Zhi-Min ; Li, Zhan-Ku ; Wang, Sheng-Kang ; Yang, Zheng ; Xu, Mei-Ling ; Shi, Chong ; Wei, Xian-Yong ; Wang, Yu-Gao</creator><creatorcontrib>Li, Sheng ; Zong, Zhi-Min ; Li, Zhan-Ku ; Wang, Sheng-Kang ; Yang, Zheng ; Xu, Mei-Ling ; Shi, Chong ; Wei, Xian-Yong ; Wang, Yu-Gao</creatorcontrib><description>Extraction residue (ER) from ultrasonic extraction of Xinghe lignite (XL) was subjected to sequential thermal dissolution (TD) in cyclohexane from 200°C to 320°C and subsequently in benzene, methanol, ethanol, and isopropanol at 320°C. The yields of soluble portions (SPs) in methanol and ethanol are much higher than those in cyclohexane and benzene, and the total SP yield is ca. 48.3%. According to gas chromatography/mass spectrometric analysis, the most abundant group components are arenols in cyclohexane-soluble portion obtained at 290°C and methanol-soluble portion obtained at 320°C, arenes in both cyclohexane- and benzene-soluble portions obtained at 320°C, alkanoates in ethanol-soluble portion obtained at 320°C, and alkenones in isopropanol-soluble portion obtained at 320°C. Anthracene was used as hydrogen acceptor to probe hydrogen transfer (HT) from ER in terms of the formation of 9,10-dihydroanthracene (DHA) and 1,2,3,4-tetrahydroanthracene (THA) during TD. As a result, both DHA and THA were detected in all the SPs except benzene-soluble portion obtained at 320°C and the yields of both DHA and THA increased with raising temperature in cyclohexane, indicating that raising temperature enhances HT from ER to anthracene. Compared to TD in cyclohexane, alkanols, especially isopropanol, enhance the HT more significantly at 320°C. •Most of organic matter in ER was converted into SPs via sequential TD/alkanolyses.•Anthracene was added to the sequential TD/alkanolyses to monitor hydrogen transfer.•Hydrogen transfer significantly proceeded during the ER alkanolyses.</description><identifier>ISSN: 0378-3820</identifier><identifier>EISSN: 1873-7188</identifier><identifier>DOI: 10.1016/j.fuproc.2017.07.025</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alkanolysis ; Anthracene ; anthracenes ; Aromatic compounds ; Benzene ; Chromatography ; Cyclohexane ; cyclohexanes ; Dissolution ; Ethanol ; Extraction processes ; Gas chromatography ; Hydrogen ; Hydrogen storage ; Hydrogen transfer ; Isopropanol ; isopropyl alcohol ; Lignite ; Mass spectrometry ; Methanol ; Organic chemicals ; Spectrometry ; temperature ; Thermal dissolution ; ultrasonics</subject><ispartof>Fuel processing technology, 2017-12, Vol.167, p.425-430</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Dec 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-9274ec55e83c482f86ffc93011e9012aa3e44e2e709dc628881ee6894bcdafcc3</citedby><cites>FETCH-LOGICAL-c470t-9274ec55e83c482f86ffc93011e9012aa3e44e2e709dc628881ee6894bcdafcc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Zong, Zhi-Min</creatorcontrib><creatorcontrib>Li, Zhan-Ku</creatorcontrib><creatorcontrib>Wang, Sheng-Kang</creatorcontrib><creatorcontrib>Yang, Zheng</creatorcontrib><creatorcontrib>Xu, Mei-Ling</creatorcontrib><creatorcontrib>Shi, Chong</creatorcontrib><creatorcontrib>Wei, Xian-Yong</creatorcontrib><creatorcontrib>Wang, Yu-Gao</creatorcontrib><title>Sequential thermal dissolution and alkanolyses of extraction residue from Xinghe lignite</title><title>Fuel processing technology</title><description>Extraction residue (ER) from ultrasonic extraction of Xinghe lignite (XL) was subjected to sequential thermal dissolution (TD) in cyclohexane from 200°C to 320°C and subsequently in benzene, methanol, ethanol, and isopropanol at 320°C. The yields of soluble portions (SPs) in methanol and ethanol are much higher than those in cyclohexane and benzene, and the total SP yield is ca. 48.3%. According to gas chromatography/mass spectrometric analysis, the most abundant group components are arenols in cyclohexane-soluble portion obtained at 290°C and methanol-soluble portion obtained at 320°C, arenes in both cyclohexane- and benzene-soluble portions obtained at 320°C, alkanoates in ethanol-soluble portion obtained at 320°C, and alkenones in isopropanol-soluble portion obtained at 320°C. Anthracene was used as hydrogen acceptor to probe hydrogen transfer (HT) from ER in terms of the formation of 9,10-dihydroanthracene (DHA) and 1,2,3,4-tetrahydroanthracene (THA) during TD. As a result, both DHA and THA were detected in all the SPs except benzene-soluble portion obtained at 320°C and the yields of both DHA and THA increased with raising temperature in cyclohexane, indicating that raising temperature enhances HT from ER to anthracene. Compared to TD in cyclohexane, alkanols, especially isopropanol, enhance the HT more significantly at 320°C. •Most of organic matter in ER was converted into SPs via sequential TD/alkanolyses.•Anthracene was added to the sequential TD/alkanolyses to monitor hydrogen transfer.•Hydrogen transfer significantly proceeded during the ER alkanolyses.</description><subject>Alkanolysis</subject><subject>Anthracene</subject><subject>anthracenes</subject><subject>Aromatic compounds</subject><subject>Benzene</subject><subject>Chromatography</subject><subject>Cyclohexane</subject><subject>cyclohexanes</subject><subject>Dissolution</subject><subject>Ethanol</subject><subject>Extraction processes</subject><subject>Gas chromatography</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Hydrogen transfer</subject><subject>Isopropanol</subject><subject>isopropyl alcohol</subject><subject>Lignite</subject><subject>Mass spectrometry</subject><subject>Methanol</subject><subject>Organic chemicals</subject><subject>Spectrometry</subject><subject>temperature</subject><subject>Thermal dissolution</subject><subject>ultrasonics</subject><issn>0378-3820</issn><issn>1873-7188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Aw8FL166JmnapBdBFv_BggcV9hZiOtnN2iZr0or77c1aTx6EB3OY3zzmPYTOCZ4RTKqrzcwM2-D1jGLCZziJlgdoQgQvck6EOEQTXHCRF4LiY3QS4wZjXJY1n6DlM3wM4Hqr2qxfQ-jSbGyMvh16612mXJOp9l053-4ixMybDL76oPTPNkC0zQCZCb7Lltat1pC1duVsD6foyKg2wtnvnKLXu9uX-UO-eLp_nN8scs047vOacga6LEEUmglqRGWMrgtMCNSYUKUKYAwocFw3uqJCCAJQiZq96UYZrYspuhx9UwEpSexlZ6OGtlUO_BAl3UdlFSU8oRd_0I0fgkvfJYpRXpGK1YliI6WDjzGAkdtgOxV2kmC5r1tu5Fi33NctcRIt09n1eAYp7KeFIKO24DQ0NoDuZePt_wbfiQ2L2g</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Li, Sheng</creator><creator>Zong, Zhi-Min</creator><creator>Li, Zhan-Ku</creator><creator>Wang, Sheng-Kang</creator><creator>Yang, Zheng</creator><creator>Xu, Mei-Ling</creator><creator>Shi, Chong</creator><creator>Wei, Xian-Yong</creator><creator>Wang, Yu-Gao</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20171201</creationdate><title>Sequential thermal dissolution and alkanolyses of extraction residue from Xinghe lignite</title><author>Li, Sheng ; Zong, Zhi-Min ; Li, Zhan-Ku ; Wang, Sheng-Kang ; Yang, Zheng ; Xu, Mei-Ling ; Shi, Chong ; Wei, Xian-Yong ; Wang, Yu-Gao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-9274ec55e83c482f86ffc93011e9012aa3e44e2e709dc628881ee6894bcdafcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alkanolysis</topic><topic>Anthracene</topic><topic>anthracenes</topic><topic>Aromatic compounds</topic><topic>Benzene</topic><topic>Chromatography</topic><topic>Cyclohexane</topic><topic>cyclohexanes</topic><topic>Dissolution</topic><topic>Ethanol</topic><topic>Extraction processes</topic><topic>Gas chromatography</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Hydrogen transfer</topic><topic>Isopropanol</topic><topic>isopropyl alcohol</topic><topic>Lignite</topic><topic>Mass spectrometry</topic><topic>Methanol</topic><topic>Organic chemicals</topic><topic>Spectrometry</topic><topic>temperature</topic><topic>Thermal dissolution</topic><topic>ultrasonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Zong, Zhi-Min</creatorcontrib><creatorcontrib>Li, Zhan-Ku</creatorcontrib><creatorcontrib>Wang, Sheng-Kang</creatorcontrib><creatorcontrib>Yang, Zheng</creatorcontrib><creatorcontrib>Xu, Mei-Ling</creatorcontrib><creatorcontrib>Shi, Chong</creatorcontrib><creatorcontrib>Wei, Xian-Yong</creatorcontrib><creatorcontrib>Wang, Yu-Gao</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Fuel processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Sheng</au><au>Zong, Zhi-Min</au><au>Li, Zhan-Ku</au><au>Wang, Sheng-Kang</au><au>Yang, Zheng</au><au>Xu, Mei-Ling</au><au>Shi, Chong</au><au>Wei, Xian-Yong</au><au>Wang, Yu-Gao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential thermal dissolution and alkanolyses of extraction residue from Xinghe lignite</atitle><jtitle>Fuel processing technology</jtitle><date>2017-12-01</date><risdate>2017</risdate><volume>167</volume><spage>425</spage><epage>430</epage><pages>425-430</pages><issn>0378-3820</issn><eissn>1873-7188</eissn><abstract>Extraction residue (ER) from ultrasonic extraction of Xinghe lignite (XL) was subjected to sequential thermal dissolution (TD) in cyclohexane from 200°C to 320°C and subsequently in benzene, methanol, ethanol, and isopropanol at 320°C. The yields of soluble portions (SPs) in methanol and ethanol are much higher than those in cyclohexane and benzene, and the total SP yield is ca. 48.3%. According to gas chromatography/mass spectrometric analysis, the most abundant group components are arenols in cyclohexane-soluble portion obtained at 290°C and methanol-soluble portion obtained at 320°C, arenes in both cyclohexane- and benzene-soluble portions obtained at 320°C, alkanoates in ethanol-soluble portion obtained at 320°C, and alkenones in isopropanol-soluble portion obtained at 320°C. Anthracene was used as hydrogen acceptor to probe hydrogen transfer (HT) from ER in terms of the formation of 9,10-dihydroanthracene (DHA) and 1,2,3,4-tetrahydroanthracene (THA) during TD. As a result, both DHA and THA were detected in all the SPs except benzene-soluble portion obtained at 320°C and the yields of both DHA and THA increased with raising temperature in cyclohexane, indicating that raising temperature enhances HT from ER to anthracene. Compared to TD in cyclohexane, alkanols, especially isopropanol, enhance the HT more significantly at 320°C. •Most of organic matter in ER was converted into SPs via sequential TD/alkanolyses.•Anthracene was added to the sequential TD/alkanolyses to monitor hydrogen transfer.•Hydrogen transfer significantly proceeded during the ER alkanolyses.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fuproc.2017.07.025</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-3820
ispartof Fuel processing technology, 2017-12, Vol.167, p.425-430
issn 0378-3820
1873-7188
language eng
recordid cdi_proquest_miscellaneous_2000546217
source ScienceDirect Freedom Collection
subjects Alkanolysis
Anthracene
anthracenes
Aromatic compounds
Benzene
Chromatography
Cyclohexane
cyclohexanes
Dissolution
Ethanol
Extraction processes
Gas chromatography
Hydrogen
Hydrogen storage
Hydrogen transfer
Isopropanol
isopropyl alcohol
Lignite
Mass spectrometry
Methanol
Organic chemicals
Spectrometry
temperature
Thermal dissolution
ultrasonics
title Sequential thermal dissolution and alkanolyses of extraction residue from Xinghe lignite
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A27%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20thermal%20dissolution%20and%20alkanolyses%20of%20extraction%20residue%20from%20Xinghe%20lignite&rft.jtitle=Fuel%20processing%20technology&rft.au=Li,%20Sheng&rft.date=2017-12-01&rft.volume=167&rft.spage=425&rft.epage=430&rft.pages=425-430&rft.issn=0378-3820&rft.eissn=1873-7188&rft_id=info:doi/10.1016/j.fuproc.2017.07.025&rft_dat=%3Cproquest_cross%3E2000546217%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-9274ec55e83c482f86ffc93011e9012aa3e44e2e709dc628881ee6894bcdafcc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2042761649&rft_id=info:pmid/&rfr_iscdi=true