Loading…

Patterning Three-Dimensional Hydrogel Microenvironments Using Hyperbranched Polyglycerols for Independent Control of Mesh Size and Stiffness

The extracellular matrix is an environment rich with structural, mechanical, and molecular signals that can impact cell biology. Traditional approaches in hydrogel biomaterial design often rely on modifying the concentration of cross-linking groups to adjust mechanical properties. However, this stra...

Full description

Saved in:
Bibliographic Details
Published in:Biomacromolecules 2017-04, Vol.18 (4), p.1393-1400
Main Authors: Pedron, Sara, Pritchard, Amanda M, Vincil, Gretchen A, Andrade, Brenda, Zimmerman, Steven C, Harley, Brendan A. C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a419t-5e3912f2251694ceae48814c774f04d2169a367846d0c3f5b27aecf142ff295c3
cites cdi_FETCH-LOGICAL-a419t-5e3912f2251694ceae48814c774f04d2169a367846d0c3f5b27aecf142ff295c3
container_end_page 1400
container_issue 4
container_start_page 1393
container_title Biomacromolecules
container_volume 18
creator Pedron, Sara
Pritchard, Amanda M
Vincil, Gretchen A
Andrade, Brenda
Zimmerman, Steven C
Harley, Brendan A. C
description The extracellular matrix is an environment rich with structural, mechanical, and molecular signals that can impact cell biology. Traditional approaches in hydrogel biomaterial design often rely on modifying the concentration of cross-linking groups to adjust mechanical properties. However, this strategy provides limited capacity to control additional important parameters in 3D cell culture such as microstructure and molecular diffusivity. Here we describe the use of multifunctional hyperbranched polyglycerols (HPGs) to manipulate the mechanical properties of polyethylene glycol (PEG) hydrogels while not altering biomolecule diffusion. This strategy also provides the ability to separately regulate spatial and temporal distribution of biomolecules tethered within the hydrogel. The functionalized HPGs used here can also react through a copper-free click chemistry, allowing for the encapsulation of cells and covalently tethered biomolecules within the hydrogel. Because of the hyperbranched architecture and unique properties of HPGs, their addition into PEG hydrogels affords opportunities to locally alter hydrogel cross-linking density with minimal effects on global network architecture. Additionally, photocoupling chemistry allows micropatterning of bioactive cues within the three-dimensional gel structure. This approach therefore enables us to tailor mechanical and diffusive properties independently while further allowing for local modulation of biomolecular cues to create increasingly complex cell culture microenvironments.
doi_str_mv 10.1021/acs.biomac.7b00118
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2000547182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2000547182</sourcerecordid><originalsourceid>FETCH-LOGICAL-a419t-5e3912f2251694ceae48814c774f04d2169a367846d0c3f5b27aecf142ff295c3</originalsourceid><addsrcrecordid>eNqFkcFu1DAURS0EoqXtD7BAXrLJYDt2nCzRAJ1KrajUdh05zvOMq8Qe_DKVwjfw0fUwA8t2Y1t-597FO4R85GzBmeBfjMVF5-No7EJ3jHFevyGnXImqkBUTb_--VaF1o0_IB8RHxlhTSvWenIhaSFVW7JT8uTXTBCn4sKb3mwRQfPMjBPQxmIGu5j7FNQz0xtsUITz5FEMeT0gfcB9ZzVtIXTLBbqCnt3GY18NsIcUBqYuJXoUetpCPMNFlDFMe0OjoDeCG3vnfQE3o6d3knQuAeE7eOTMgXBzvM_Lw4_v9clVc_7y8Wn69LozkzVQoKBsunBCKV420YEDWNZdWa-mY7EX-NWWla1n1zJZOdUIbsI5L4ZxolC3PyOdD7zbFXzvAqR09WhgGEyDusBV5U0pqXotXUV7rsmykUDKj4oDmVSEmcO02-dGkueWs3Qtrs7D2IKw9CsuhT8f-XTdC_z_yz1AGFgdgH36Mu5S94EuNz_w7paY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1873394254</pqid></control><display><type>article</type><title>Patterning Three-Dimensional Hydrogel Microenvironments Using Hyperbranched Polyglycerols for Independent Control of Mesh Size and Stiffness</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Pedron, Sara ; Pritchard, Amanda M ; Vincil, Gretchen A ; Andrade, Brenda ; Zimmerman, Steven C ; Harley, Brendan A. C</creator><creatorcontrib>Pedron, Sara ; Pritchard, Amanda M ; Vincil, Gretchen A ; Andrade, Brenda ; Zimmerman, Steven C ; Harley, Brendan A. C</creatorcontrib><description>The extracellular matrix is an environment rich with structural, mechanical, and molecular signals that can impact cell biology. Traditional approaches in hydrogel biomaterial design often rely on modifying the concentration of cross-linking groups to adjust mechanical properties. However, this strategy provides limited capacity to control additional important parameters in 3D cell culture such as microstructure and molecular diffusivity. Here we describe the use of multifunctional hyperbranched polyglycerols (HPGs) to manipulate the mechanical properties of polyethylene glycol (PEG) hydrogels while not altering biomolecule diffusion. This strategy also provides the ability to separately regulate spatial and temporal distribution of biomolecules tethered within the hydrogel. The functionalized HPGs used here can also react through a copper-free click chemistry, allowing for the encapsulation of cells and covalently tethered biomolecules within the hydrogel. Because of the hyperbranched architecture and unique properties of HPGs, their addition into PEG hydrogels affords opportunities to locally alter hydrogel cross-linking density with minimal effects on global network architecture. Additionally, photocoupling chemistry allows micropatterning of bioactive cues within the three-dimensional gel structure. This approach therefore enables us to tailor mechanical and diffusive properties independently while further allowing for local modulation of biomolecular cues to create increasingly complex cell culture microenvironments.</description><identifier>ISSN: 1525-7797</identifier><identifier>ISSN: 1526-4602</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/acs.biomac.7b00118</identifier><identifier>PMID: 28245360</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; biochemical compounds ; Biochemical Phenomena ; Biocompatible Materials - chemical synthesis ; Biocompatible Materials - chemistry ; Biophysical Phenomena ; cell culture ; Cell Culture Techniques ; Cell Proliferation - physiology ; Cell Survival - physiology ; Cells, Cultured ; chemical bonding ; Cross-Linking Reagents - chemistry ; crosslinking ; diffusivity ; Elastic Modulus ; encapsulation ; extracellular matrix ; Extracellular Matrix - chemistry ; Glycerol - chemical synthesis ; Glycerol - chemistry ; hydrogels ; Hydrogels - chemical synthesis ; Hydrogels - chemistry ; mechanical properties ; microstructure ; Molecular Structure ; polyethylene glycol ; Polyethylene Glycols - chemical synthesis ; Polyethylene Glycols - chemistry ; Polymers - chemical synthesis ; Polymers - chemistry ; Stem Cells - cytology ; Swine</subject><ispartof>Biomacromolecules, 2017-04, Vol.18 (4), p.1393-1400</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a419t-5e3912f2251694ceae48814c774f04d2169a367846d0c3f5b27aecf142ff295c3</citedby><cites>FETCH-LOGICAL-a419t-5e3912f2251694ceae48814c774f04d2169a367846d0c3f5b27aecf142ff295c3</cites><orcidid>0000-0001-5458-154X ; 0000-0002-5333-3437</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28245360$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pedron, Sara</creatorcontrib><creatorcontrib>Pritchard, Amanda M</creatorcontrib><creatorcontrib>Vincil, Gretchen A</creatorcontrib><creatorcontrib>Andrade, Brenda</creatorcontrib><creatorcontrib>Zimmerman, Steven C</creatorcontrib><creatorcontrib>Harley, Brendan A. C</creatorcontrib><title>Patterning Three-Dimensional Hydrogel Microenvironments Using Hyperbranched Polyglycerols for Independent Control of Mesh Size and Stiffness</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>The extracellular matrix is an environment rich with structural, mechanical, and molecular signals that can impact cell biology. Traditional approaches in hydrogel biomaterial design often rely on modifying the concentration of cross-linking groups to adjust mechanical properties. However, this strategy provides limited capacity to control additional important parameters in 3D cell culture such as microstructure and molecular diffusivity. Here we describe the use of multifunctional hyperbranched polyglycerols (HPGs) to manipulate the mechanical properties of polyethylene glycol (PEG) hydrogels while not altering biomolecule diffusion. This strategy also provides the ability to separately regulate spatial and temporal distribution of biomolecules tethered within the hydrogel. The functionalized HPGs used here can also react through a copper-free click chemistry, allowing for the encapsulation of cells and covalently tethered biomolecules within the hydrogel. Because of the hyperbranched architecture and unique properties of HPGs, their addition into PEG hydrogels affords opportunities to locally alter hydrogel cross-linking density with minimal effects on global network architecture. Additionally, photocoupling chemistry allows micropatterning of bioactive cues within the three-dimensional gel structure. This approach therefore enables us to tailor mechanical and diffusive properties independently while further allowing for local modulation of biomolecular cues to create increasingly complex cell culture microenvironments.</description><subject>Animals</subject><subject>biochemical compounds</subject><subject>Biochemical Phenomena</subject><subject>Biocompatible Materials - chemical synthesis</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biophysical Phenomena</subject><subject>cell culture</subject><subject>Cell Culture Techniques</subject><subject>Cell Proliferation - physiology</subject><subject>Cell Survival - physiology</subject><subject>Cells, Cultured</subject><subject>chemical bonding</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>crosslinking</subject><subject>diffusivity</subject><subject>Elastic Modulus</subject><subject>encapsulation</subject><subject>extracellular matrix</subject><subject>Extracellular Matrix - chemistry</subject><subject>Glycerol - chemical synthesis</subject><subject>Glycerol - chemistry</subject><subject>hydrogels</subject><subject>Hydrogels - chemical synthesis</subject><subject>Hydrogels - chemistry</subject><subject>mechanical properties</subject><subject>microstructure</subject><subject>Molecular Structure</subject><subject>polyethylene glycol</subject><subject>Polyethylene Glycols - chemical synthesis</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polymers - chemical synthesis</subject><subject>Polymers - chemistry</subject><subject>Stem Cells - cytology</subject><subject>Swine</subject><issn>1525-7797</issn><issn>1526-4602</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAURS0EoqXtD7BAXrLJYDt2nCzRAJ1KrajUdh05zvOMq8Qe_DKVwjfw0fUwA8t2Y1t-597FO4R85GzBmeBfjMVF5-No7EJ3jHFevyGnXImqkBUTb_--VaF1o0_IB8RHxlhTSvWenIhaSFVW7JT8uTXTBCn4sKb3mwRQfPMjBPQxmIGu5j7FNQz0xtsUITz5FEMeT0gfcB9ZzVtIXTLBbqCnt3GY18NsIcUBqYuJXoUetpCPMNFlDFMe0OjoDeCG3vnfQE3o6d3knQuAeE7eOTMgXBzvM_Lw4_v9clVc_7y8Wn69LozkzVQoKBsunBCKV420YEDWNZdWa-mY7EX-NWWla1n1zJZOdUIbsI5L4ZxolC3PyOdD7zbFXzvAqR09WhgGEyDusBV5U0pqXotXUV7rsmykUDKj4oDmVSEmcO02-dGkueWs3Qtrs7D2IKw9CsuhT8f-XTdC_z_yz1AGFgdgH36Mu5S94EuNz_w7paY</recordid><startdate>20170410</startdate><enddate>20170410</enddate><creator>Pedron, Sara</creator><creator>Pritchard, Amanda M</creator><creator>Vincil, Gretchen A</creator><creator>Andrade, Brenda</creator><creator>Zimmerman, Steven C</creator><creator>Harley, Brendan A. C</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-5458-154X</orcidid><orcidid>https://orcid.org/0000-0002-5333-3437</orcidid></search><sort><creationdate>20170410</creationdate><title>Patterning Three-Dimensional Hydrogel Microenvironments Using Hyperbranched Polyglycerols for Independent Control of Mesh Size and Stiffness</title><author>Pedron, Sara ; Pritchard, Amanda M ; Vincil, Gretchen A ; Andrade, Brenda ; Zimmerman, Steven C ; Harley, Brendan A. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a419t-5e3912f2251694ceae48814c774f04d2169a367846d0c3f5b27aecf142ff295c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>biochemical compounds</topic><topic>Biochemical Phenomena</topic><topic>Biocompatible Materials - chemical synthesis</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biophysical Phenomena</topic><topic>cell culture</topic><topic>Cell Culture Techniques</topic><topic>Cell Proliferation - physiology</topic><topic>Cell Survival - physiology</topic><topic>Cells, Cultured</topic><topic>chemical bonding</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>crosslinking</topic><topic>diffusivity</topic><topic>Elastic Modulus</topic><topic>encapsulation</topic><topic>extracellular matrix</topic><topic>Extracellular Matrix - chemistry</topic><topic>Glycerol - chemical synthesis</topic><topic>Glycerol - chemistry</topic><topic>hydrogels</topic><topic>Hydrogels - chemical synthesis</topic><topic>Hydrogels - chemistry</topic><topic>mechanical properties</topic><topic>microstructure</topic><topic>Molecular Structure</topic><topic>polyethylene glycol</topic><topic>Polyethylene Glycols - chemical synthesis</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polymers - chemical synthesis</topic><topic>Polymers - chemistry</topic><topic>Stem Cells - cytology</topic><topic>Swine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pedron, Sara</creatorcontrib><creatorcontrib>Pritchard, Amanda M</creatorcontrib><creatorcontrib>Vincil, Gretchen A</creatorcontrib><creatorcontrib>Andrade, Brenda</creatorcontrib><creatorcontrib>Zimmerman, Steven C</creatorcontrib><creatorcontrib>Harley, Brendan A. C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pedron, Sara</au><au>Pritchard, Amanda M</au><au>Vincil, Gretchen A</au><au>Andrade, Brenda</au><au>Zimmerman, Steven C</au><au>Harley, Brendan A. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patterning Three-Dimensional Hydrogel Microenvironments Using Hyperbranched Polyglycerols for Independent Control of Mesh Size and Stiffness</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2017-04-10</date><risdate>2017</risdate><volume>18</volume><issue>4</issue><spage>1393</spage><epage>1400</epage><pages>1393-1400</pages><issn>1525-7797</issn><issn>1526-4602</issn><eissn>1526-4602</eissn><abstract>The extracellular matrix is an environment rich with structural, mechanical, and molecular signals that can impact cell biology. Traditional approaches in hydrogel biomaterial design often rely on modifying the concentration of cross-linking groups to adjust mechanical properties. However, this strategy provides limited capacity to control additional important parameters in 3D cell culture such as microstructure and molecular diffusivity. Here we describe the use of multifunctional hyperbranched polyglycerols (HPGs) to manipulate the mechanical properties of polyethylene glycol (PEG) hydrogels while not altering biomolecule diffusion. This strategy also provides the ability to separately regulate spatial and temporal distribution of biomolecules tethered within the hydrogel. The functionalized HPGs used here can also react through a copper-free click chemistry, allowing for the encapsulation of cells and covalently tethered biomolecules within the hydrogel. Because of the hyperbranched architecture and unique properties of HPGs, their addition into PEG hydrogels affords opportunities to locally alter hydrogel cross-linking density with minimal effects on global network architecture. Additionally, photocoupling chemistry allows micropatterning of bioactive cues within the three-dimensional gel structure. This approach therefore enables us to tailor mechanical and diffusive properties independently while further allowing for local modulation of biomolecular cues to create increasingly complex cell culture microenvironments.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28245360</pmid><doi>10.1021/acs.biomac.7b00118</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5458-154X</orcidid><orcidid>https://orcid.org/0000-0002-5333-3437</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-7797
ispartof Biomacromolecules, 2017-04, Vol.18 (4), p.1393-1400
issn 1525-7797
1526-4602
1526-4602
language eng
recordid cdi_proquest_miscellaneous_2000547182
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Animals
biochemical compounds
Biochemical Phenomena
Biocompatible Materials - chemical synthesis
Biocompatible Materials - chemistry
Biophysical Phenomena
cell culture
Cell Culture Techniques
Cell Proliferation - physiology
Cell Survival - physiology
Cells, Cultured
chemical bonding
Cross-Linking Reagents - chemistry
crosslinking
diffusivity
Elastic Modulus
encapsulation
extracellular matrix
Extracellular Matrix - chemistry
Glycerol - chemical synthesis
Glycerol - chemistry
hydrogels
Hydrogels - chemical synthesis
Hydrogels - chemistry
mechanical properties
microstructure
Molecular Structure
polyethylene glycol
Polyethylene Glycols - chemical synthesis
Polyethylene Glycols - chemistry
Polymers - chemical synthesis
Polymers - chemistry
Stem Cells - cytology
Swine
title Patterning Three-Dimensional Hydrogel Microenvironments Using Hyperbranched Polyglycerols for Independent Control of Mesh Size and Stiffness
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A04%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patterning%20Three-Dimensional%20Hydrogel%20Microenvironments%20Using%20Hyperbranched%20Polyglycerols%20for%20Independent%20Control%20of%20Mesh%20Size%20and%20Stiffness&rft.jtitle=Biomacromolecules&rft.au=Pedron,%20Sara&rft.date=2017-04-10&rft.volume=18&rft.issue=4&rft.spage=1393&rft.epage=1400&rft.pages=1393-1400&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/acs.biomac.7b00118&rft_dat=%3Cproquest_cross%3E2000547182%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a419t-5e3912f2251694ceae48814c774f04d2169a367846d0c3f5b27aecf142ff295c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1873394254&rft_id=info:pmid/28245360&rfr_iscdi=true