Loading…

Implementation of Tube Radial Distribution Chromatography by Using a Commercially Available HPLC System

Tube radial distribution chromatography based on tube radial distribution flow, or annular flow, in an open-tubular capillary has been reported. The chromatographic system requires specific instruments and treatments for microfluidic flow in the capillary tube. In this study, we have developed a new...

Full description

Saved in:
Bibliographic Details
Published in:Analytical Sciences 2018/02/10, Vol.34(2), pp.239-241
Main Authors: KAN, Hyo, YAMADA, Kento, SANADA, Nobuyuki, NAKATA, Koyo, TSUKAGOSHI, Kazuhiko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tube radial distribution chromatography based on tube radial distribution flow, or annular flow, in an open-tubular capillary has been reported. The chromatographic system requires specific instruments and treatments for microfluidic flow in the capillary tube. In this study, we have developed a new model of tube radial distribution chromatography, which is comprised of a commercially available HPLC system without any packed separation columns. Separation is performed in an open-tubular pipe (100-μm inner diameter and 350-cm length; temperature, 5°C) connected between the pump and the detector in the HPLC system. An analyte solution is introduced with a sample injector (2-μL volume) and a ternary water/acetonitrile/ethyl acetate mixed solution (volume ratio of 3:8:2) is delivered as an eluent solution into the pipe at a flow rate of 10-μL min−1. Fused silica and stainless pipes can separate 1-naphthol and 2,6-naphthalenedisulfonic acid, but a polyetheretherketone pipe cannot. The obtained data provides an important clue to practical developments in separation science.
ISSN:0910-6340
1348-2246
DOI:10.2116/analsci.34.239