Loading…

Markov chain Monte Carlo algorithm for upscaled soil-vegetation-atmosphere-transfer modeling to evaluate satellite-based soil moisture measurements

A Markov chain Monte Carlo (MCMC) based algorithm was developed to derive upscaled land surface parameters for a soil-vegetation-atmosphere-transfer (SVAT) model using time series data of satellite-measured atmospheric forcings (e.g., precipitation), and land surface states (e.g., soil moisture and...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research 2008-05, Vol.44 (5), p.n/a
Main Authors: Das, N.N, Mohanty, B.P, Njoku, E.G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a4265-7e30bd1a36ffde38e2c60941bbd3f7870b44bf3b9c428aee4c1bfe9ed424e3773
cites cdi_FETCH-LOGICAL-a4265-7e30bd1a36ffde38e2c60941bbd3f7870b44bf3b9c428aee4c1bfe9ed424e3773
container_end_page n/a
container_issue 5
container_start_page
container_title Water resources research
container_volume 44
creator Das, N.N
Mohanty, B.P
Njoku, E.G
description A Markov chain Monte Carlo (MCMC) based algorithm was developed to derive upscaled land surface parameters for a soil-vegetation-atmosphere-transfer (SVAT) model using time series data of satellite-measured atmospheric forcings (e.g., precipitation), and land surface states (e.g., soil moisture and vegetation). This study focuses especially on the evaluation of soil moisture measurements of the Aqua satellite based Advanced Microwave Scanning Radiometer (AMSR-E) instrument using the new MCMC-based scaling algorithm. Soil moisture evolution was modeled at a spatial scale comparable to the AMSR-E soil moisture product, with the hypothesis that the characterization of soil microwave emissions and their variations with space and time on soil surface within the AMSR-E footprint can be represented by an ensemble of upscaled soil hydraulic parameters. We demonstrated the features of the MCMC-based parameter upscaling algorithm (from field to satellite footprint scale) within a SVAT model framework to evaluate the satellite-based brightness temperature/soil moisture measurements for different hydroclimatic regions, and identified the temporal effects of vegetation (leaf area index) and other environmental factors on AMSR-E based remotely sensed soil moisture data. The SVAT modeling applied for different hydroclimatic regions revealed the limitation of AMSR-E measurements in high-vegetation regions. The study also suggests that inclusion of soil moisture evolution from the proposed upscaled SVAT model with AMSR-E measurements in data assimilation routine will improve the quality of soil moisture assessment in a footprint scale. The technique also has the potential to derive upscaled parameters of other geophysical properties used in remote sensing of land surface states. The developed MCMC algorithm with SVAT model can be very useful for land-atmosphere interaction studies and further understanding of the physical controls responsible for soil moisture dynamics at different scales.
doi_str_mv 10.1029/2007WR006472
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20025846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20025846</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4265-7e30bd1a36ffde38e2c60941bbd3f7870b44bf3b9c428aee4c1bfe9ed424e3773</originalsourceid><addsrcrecordid>eNqFkU-P0zAUxCMEEmXhxh2fOGHwv8T1ESoooO2idln1aDnJc2tw4mI7hf0cfGGMskKc4PLm8pvR00xVPaXkJSVMvWKEyP2OkEZIdq9aUCUElkry-9WCEMEx5Uo-rB6l9IUQKupGLqqfGxO_hjPqjsaNaBPGDGhlog_I-EOILh8HZENE0yl1xkOPUnAen-EA2WQXRmzyENLpCBFwjmZMFiIaQg_ejQeUA4Kz8ZMpqakc710G3Jp0F1RIl_IUAQ1gUtEBxpweVw-s8Qme3OlFdfPu7efVe3z5af1h9foSG8GaGkvgpO2p4Y21PfAlsK4hStC27bmVS0laIVrLW9UJtjQAoqOtBQW9YAK4lPyiej7nnmL4NkHKenCpK0-aEcKUdKmT1UvR_BekqhG1UKKAL2awiyGlCFafohtMvNWU6N8T6b8nKjif8e_Ow-0_Wb3frXaU1qwuLjy7SnXw44-r7KgbyWWt91drvd68ud5ebT_qbeGfzbw1QZtDdEnfXDNCOSGK1rR4fgFNPq_9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19645494</pqid></control><display><type>article</type><title>Markov chain Monte Carlo algorithm for upscaled soil-vegetation-atmosphere-transfer modeling to evaluate satellite-based soil moisture measurements</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Das, N.N ; Mohanty, B.P ; Njoku, E.G</creator><creatorcontrib>Das, N.N ; Mohanty, B.P ; Njoku, E.G</creatorcontrib><description>A Markov chain Monte Carlo (MCMC) based algorithm was developed to derive upscaled land surface parameters for a soil-vegetation-atmosphere-transfer (SVAT) model using time series data of satellite-measured atmospheric forcings (e.g., precipitation), and land surface states (e.g., soil moisture and vegetation). This study focuses especially on the evaluation of soil moisture measurements of the Aqua satellite based Advanced Microwave Scanning Radiometer (AMSR-E) instrument using the new MCMC-based scaling algorithm. Soil moisture evolution was modeled at a spatial scale comparable to the AMSR-E soil moisture product, with the hypothesis that the characterization of soil microwave emissions and their variations with space and time on soil surface within the AMSR-E footprint can be represented by an ensemble of upscaled soil hydraulic parameters. We demonstrated the features of the MCMC-based parameter upscaling algorithm (from field to satellite footprint scale) within a SVAT model framework to evaluate the satellite-based brightness temperature/soil moisture measurements for different hydroclimatic regions, and identified the temporal effects of vegetation (leaf area index) and other environmental factors on AMSR-E based remotely sensed soil moisture data. The SVAT modeling applied for different hydroclimatic regions revealed the limitation of AMSR-E measurements in high-vegetation regions. The study also suggests that inclusion of soil moisture evolution from the proposed upscaled SVAT model with AMSR-E measurements in data assimilation routine will improve the quality of soil moisture assessment in a footprint scale. The technique also has the potential to derive upscaled parameters of other geophysical properties used in remote sensing of land surface states. The developed MCMC algorithm with SVAT model can be very useful for land-atmosphere interaction studies and further understanding of the physical controls responsible for soil moisture dynamics at different scales.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2007WR006472</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>algorithms ; atmosphere ; estimation ; leaf area index ; MCMC algorithm ; Monte Carlo method ; precipitation ; radiometers ; remote sensing ; satellite remote sensing ; satellites ; soil moisture ; soil water content ; soil-atmosphere interactions ; soil-plant-atmosphere interactions ; spatial data ; SVAT modeling ; temperature ; temporal variation ; time series analysis ; upscaled parameter ; vegetation</subject><ispartof>Water resources research, 2008-05, Vol.44 (5), p.n/a</ispartof><rights>Copyright 2008 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4265-7e30bd1a36ffde38e2c60941bbd3f7870b44bf3b9c428aee4c1bfe9ed424e3773</citedby><cites>FETCH-LOGICAL-a4265-7e30bd1a36ffde38e2c60941bbd3f7870b44bf3b9c428aee4c1bfe9ed424e3773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2007WR006472$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2007WR006472$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids></links><search><creatorcontrib>Das, N.N</creatorcontrib><creatorcontrib>Mohanty, B.P</creatorcontrib><creatorcontrib>Njoku, E.G</creatorcontrib><title>Markov chain Monte Carlo algorithm for upscaled soil-vegetation-atmosphere-transfer modeling to evaluate satellite-based soil moisture measurements</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>A Markov chain Monte Carlo (MCMC) based algorithm was developed to derive upscaled land surface parameters for a soil-vegetation-atmosphere-transfer (SVAT) model using time series data of satellite-measured atmospheric forcings (e.g., precipitation), and land surface states (e.g., soil moisture and vegetation). This study focuses especially on the evaluation of soil moisture measurements of the Aqua satellite based Advanced Microwave Scanning Radiometer (AMSR-E) instrument using the new MCMC-based scaling algorithm. Soil moisture evolution was modeled at a spatial scale comparable to the AMSR-E soil moisture product, with the hypothesis that the characterization of soil microwave emissions and their variations with space and time on soil surface within the AMSR-E footprint can be represented by an ensemble of upscaled soil hydraulic parameters. We demonstrated the features of the MCMC-based parameter upscaling algorithm (from field to satellite footprint scale) within a SVAT model framework to evaluate the satellite-based brightness temperature/soil moisture measurements for different hydroclimatic regions, and identified the temporal effects of vegetation (leaf area index) and other environmental factors on AMSR-E based remotely sensed soil moisture data. The SVAT modeling applied for different hydroclimatic regions revealed the limitation of AMSR-E measurements in high-vegetation regions. The study also suggests that inclusion of soil moisture evolution from the proposed upscaled SVAT model with AMSR-E measurements in data assimilation routine will improve the quality of soil moisture assessment in a footprint scale. The technique also has the potential to derive upscaled parameters of other geophysical properties used in remote sensing of land surface states. The developed MCMC algorithm with SVAT model can be very useful for land-atmosphere interaction studies and further understanding of the physical controls responsible for soil moisture dynamics at different scales.</description><subject>algorithms</subject><subject>atmosphere</subject><subject>estimation</subject><subject>leaf area index</subject><subject>MCMC algorithm</subject><subject>Monte Carlo method</subject><subject>precipitation</subject><subject>radiometers</subject><subject>remote sensing</subject><subject>satellite remote sensing</subject><subject>satellites</subject><subject>soil moisture</subject><subject>soil water content</subject><subject>soil-atmosphere interactions</subject><subject>soil-plant-atmosphere interactions</subject><subject>spatial data</subject><subject>SVAT modeling</subject><subject>temperature</subject><subject>temporal variation</subject><subject>time series analysis</subject><subject>upscaled parameter</subject><subject>vegetation</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkU-P0zAUxCMEEmXhxh2fOGHwv8T1ESoooO2idln1aDnJc2tw4mI7hf0cfGGMskKc4PLm8pvR00xVPaXkJSVMvWKEyP2OkEZIdq9aUCUElkry-9WCEMEx5Uo-rB6l9IUQKupGLqqfGxO_hjPqjsaNaBPGDGhlog_I-EOILh8HZENE0yl1xkOPUnAen-EA2WQXRmzyENLpCBFwjmZMFiIaQg_ejQeUA4Kz8ZMpqakc710G3Jp0F1RIl_IUAQ1gUtEBxpweVw-s8Qme3OlFdfPu7efVe3z5af1h9foSG8GaGkvgpO2p4Y21PfAlsK4hStC27bmVS0laIVrLW9UJtjQAoqOtBQW9YAK4lPyiej7nnmL4NkHKenCpK0-aEcKUdKmT1UvR_BekqhG1UKKAL2awiyGlCFafohtMvNWU6N8T6b8nKjif8e_Ow-0_Wb3frXaU1qwuLjy7SnXw44-r7KgbyWWt91drvd68ud5ebT_qbeGfzbw1QZtDdEnfXDNCOSGK1rR4fgFNPq_9</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Das, N.N</creator><creator>Mohanty, B.P</creator><creator>Njoku, E.G</creator><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>200805</creationdate><title>Markov chain Monte Carlo algorithm for upscaled soil-vegetation-atmosphere-transfer modeling to evaluate satellite-based soil moisture measurements</title><author>Das, N.N ; Mohanty, B.P ; Njoku, E.G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4265-7e30bd1a36ffde38e2c60941bbd3f7870b44bf3b9c428aee4c1bfe9ed424e3773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>algorithms</topic><topic>atmosphere</topic><topic>estimation</topic><topic>leaf area index</topic><topic>MCMC algorithm</topic><topic>Monte Carlo method</topic><topic>precipitation</topic><topic>radiometers</topic><topic>remote sensing</topic><topic>satellite remote sensing</topic><topic>satellites</topic><topic>soil moisture</topic><topic>soil water content</topic><topic>soil-atmosphere interactions</topic><topic>soil-plant-atmosphere interactions</topic><topic>spatial data</topic><topic>SVAT modeling</topic><topic>temperature</topic><topic>temporal variation</topic><topic>time series analysis</topic><topic>upscaled parameter</topic><topic>vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, N.N</creatorcontrib><creatorcontrib>Mohanty, B.P</creatorcontrib><creatorcontrib>Njoku, E.G</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, N.N</au><au>Mohanty, B.P</au><au>Njoku, E.G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Markov chain Monte Carlo algorithm for upscaled soil-vegetation-atmosphere-transfer modeling to evaluate satellite-based soil moisture measurements</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2008-05</date><risdate>2008</risdate><volume>44</volume><issue>5</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>A Markov chain Monte Carlo (MCMC) based algorithm was developed to derive upscaled land surface parameters for a soil-vegetation-atmosphere-transfer (SVAT) model using time series data of satellite-measured atmospheric forcings (e.g., precipitation), and land surface states (e.g., soil moisture and vegetation). This study focuses especially on the evaluation of soil moisture measurements of the Aqua satellite based Advanced Microwave Scanning Radiometer (AMSR-E) instrument using the new MCMC-based scaling algorithm. Soil moisture evolution was modeled at a spatial scale comparable to the AMSR-E soil moisture product, with the hypothesis that the characterization of soil microwave emissions and their variations with space and time on soil surface within the AMSR-E footprint can be represented by an ensemble of upscaled soil hydraulic parameters. We demonstrated the features of the MCMC-based parameter upscaling algorithm (from field to satellite footprint scale) within a SVAT model framework to evaluate the satellite-based brightness temperature/soil moisture measurements for different hydroclimatic regions, and identified the temporal effects of vegetation (leaf area index) and other environmental factors on AMSR-E based remotely sensed soil moisture data. The SVAT modeling applied for different hydroclimatic regions revealed the limitation of AMSR-E measurements in high-vegetation regions. The study also suggests that inclusion of soil moisture evolution from the proposed upscaled SVAT model with AMSR-E measurements in data assimilation routine will improve the quality of soil moisture assessment in a footprint scale. The technique also has the potential to derive upscaled parameters of other geophysical properties used in remote sensing of land surface states. The developed MCMC algorithm with SVAT model can be very useful for land-atmosphere interaction studies and further understanding of the physical controls responsible for soil moisture dynamics at different scales.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2007WR006472</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2008-05, Vol.44 (5), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_20025846
source Wiley-Blackwell AGU Digital Archive
subjects algorithms
atmosphere
estimation
leaf area index
MCMC algorithm
Monte Carlo method
precipitation
radiometers
remote sensing
satellite remote sensing
satellites
soil moisture
soil water content
soil-atmosphere interactions
soil-plant-atmosphere interactions
spatial data
SVAT modeling
temperature
temporal variation
time series analysis
upscaled parameter
vegetation
title Markov chain Monte Carlo algorithm for upscaled soil-vegetation-atmosphere-transfer modeling to evaluate satellite-based soil moisture measurements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Markov%20chain%20Monte%20Carlo%20algorithm%20for%20upscaled%20soil-vegetation-atmosphere-transfer%20modeling%20to%20evaluate%20satellite-based%20soil%20moisture%20measurements&rft.jtitle=Water%20resources%20research&rft.au=Das,%20N.N&rft.date=2008-05&rft.volume=44&rft.issue=5&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2007WR006472&rft_dat=%3Cproquest_cross%3E20025846%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4265-7e30bd1a36ffde38e2c60941bbd3f7870b44bf3b9c428aee4c1bfe9ed424e3773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19645494&rft_id=info:pmid/&rfr_iscdi=true