Loading…
Photo-assisted electrochemical abatement of trifluralin using a cathode containing a C60-carbon nanotubes composite
This work reports the potential application of modified gas-diffusion electrode (GDE) with C60-CNT composite, as a stable and efficient cathode material for degradation of trifluralin (TRL) pesticide by photo-assisted electrochemical (PE) process. C60-CNT composite was prepared and characterized. Su...
Saved in:
Published in: | Chemosphere (Oxford) 2018-05, Vol.199, p.510-523 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work reports the potential application of modified gas-diffusion electrode (GDE) with C60-CNT composite, as a stable and efficient cathode material for degradation of trifluralin (TRL) pesticide by photo-assisted electrochemical (PE) process. C60-CNT composite was prepared and characterized. Subsequently, a novel C60-CNT composite modified GDE cathode was developed and the electrochemical and physical characteristics of the modified GDEs were studied. C60-CNT composite/GDE showed great efficiencies for electro-generating H2O2, owing to huge surface area and high conductivity. Afterwards, a comparative study of TRL oxidation via photolysis, anodic oxidation (AO) and PE processes using C60-CNT composite/GDE revealed the degradation percentages of 42.2, 48.5 and 93.4%, respectively, after 180 min of treatment. The TRL degradation followed a pseudo-first-order kinetics, being faster in the order: photolysis |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2018.02.061 |