Loading…

Alga-lytic activity of Pseudomonas fluorescens against the red tide causing marine alga Heterosigma akashiwo (Raphidophyceae)

A bacterial strain, HAK-13, exhibited strongest activity against Heterosigma akashiwo and was capable of controlling this bloom forming phytoplankton. Based on 16S rDNA sequences and biochemical and morphological characteristics, the strain HAK-13 was determined to be Pseudomonas fluorescens on the...

Full description

Saved in:
Bibliographic Details
Published in:Biological control 2007-06, Vol.41 (3), p.296-303
Main Authors: Kim, Jeong-Dong, Kim, Bora, Lee, Choul-Gyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A bacterial strain, HAK-13, exhibited strongest activity against Heterosigma akashiwo and was capable of controlling this bloom forming phytoplankton. Based on 16S rDNA sequences and biochemical and morphological characteristics, the strain HAK-13 was determined to be Pseudomonas fluorescens on the basis of 99.9% similarity with reference strains in the DNA databases. The growth of H. akashiwo was strongly suppressed by HAK-13 in all growth phases, with the strongest alga-lytic activity noted against harmful bloom-forming species in the exponential stage (6–22 days). Host range tests showed that HAK-13 also significantly inhibited the growth of Alexandrium tamarense and Cochlodinium polykrikoides but could not destroy Gymnodinium catenatum. P. fluorescens HAK-13 indirectly attacked H. akashiwo by alga-lytic substances that might be located at the compartment of cytoplasmic membrane of the bacterium at a level of 45.86 units/mg of specific activity. The results indicated that P. fluorescens HAK-13 caused cell lysis and death of H. akashiwo, A. tamarense, and C. polykrikoides dramatically and Prorocentrum dentatum slightly. Therefore, P. fluorescens HAK-13 has potential for use as a selective biocontrol of harmful algal blooms.
ISSN:1049-9644
1090-2112
DOI:10.1016/j.biocontrol.2007.02.010