Loading…
Causal Learning With Local Computations
The authors proposed and tested a psychological theory of causal structure learning based on local computations . Local computations simplify complex learning problems via cues available on individual trials to update a single causal structure hypothesis. Structural inferences from local computation...
Saved in:
Published in: | Journal of experimental psychology. Learning, memory, and cognition memory, and cognition, 2009-05, Vol.35 (3), p.678-693 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a415t-ef016fc381059dd5502e8204393a5bf24d588ab84f6040ab681e8f1c1f5f1c4b3 |
---|---|
cites | |
container_end_page | 693 |
container_issue | 3 |
container_start_page | 678 |
container_title | Journal of experimental psychology. Learning, memory, and cognition |
container_volume | 35 |
creator | Fernbach, Philip M Sloman, Steven A |
description | The authors proposed and tested a psychological theory of causal structure learning based on
local computations
. Local computations simplify complex learning problems via cues available on individual trials to update a single causal structure hypothesis. Structural inferences from local computations make minimal demands on memory, require relatively small amounts of data, and need not respect normative prescriptions as inferences that are principled locally may violate those principles when combined. Over a series of 3 experiments, the authors found (a) systematic inferences from small amounts of data; (b) systematic inference of extraneous causal links; (c) influence of data presentation order on inferences; and (d) error reduction through pretraining. Without pretraining, a model based on local computations fitted data better than a Bayesian structural inference model. The data suggest that local computations serve as a heuristic for learning causal structure. |
doi_str_mv | 10.1037/a0014928 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20083413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ836528</ericid><sourcerecordid>1726803781</sourcerecordid><originalsourceid>FETCH-LOGICAL-a415t-ef016fc381059dd5502e8204393a5bf24d588ab84f6040ab681e8f1c1f5f1c4b3</originalsourceid><addsrcrecordid>eNp90UlLxDAUB_Agio4L-AFEBnG7VLO2yVGKKwNeFI_hNZNoh24mLei3N-OMI3gwhwTyfrwX_kFon-ALgll2CRgTrqhcQyOimEoIlWIdjTDNZJIxxbbQdggzPF9MbqKtiDKFORuhsxyGANV4YsE3ZfM6fin7t_GkNfEub-tu6KEv2ybsog0HVbB7y3MHPd9cP-V3yeTx9j6_miTAiegT6zBJnWGSYKGmUyEwtZLGSYqBKBzlUyElFJK7FHMMRSqJlY4Y4kTcecF20Omib-fb98GGXtdlMLaqoLHtEDTFWDJOWIRHf-CsHXwT36ZTwrlSqZD_IUo4SyWlJKLzBTK-DcFbpztf1uA_NcF6Hq_-iTfSw2W_oajt9Bcu84zgZAkgxAidh8aUYeXi0Cz-D47uYOGsL82qfP0gWSq-5xwvytCB7sKnAd-XprJBf1S1ZkIznWaSfQE1xJNH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>614499658</pqid></control><display><type>article</type><title>Causal Learning With Local Computations</title><source>ERIC</source><source>EBSCOhost APA PsycARTICLES</source><creator>Fernbach, Philip M ; Sloman, Steven A</creator><creatorcontrib>Fernbach, Philip M ; Sloman, Steven A</creatorcontrib><description>The authors proposed and tested a psychological theory of causal structure learning based on
local computations
. Local computations simplify complex learning problems via cues available on individual trials to update a single causal structure hypothesis. Structural inferences from local computations make minimal demands on memory, require relatively small amounts of data, and need not respect normative prescriptions as inferences that are principled locally may violate those principles when combined. Over a series of 3 experiments, the authors found (a) systematic inferences from small amounts of data; (b) systematic inference of extraneous causal links; (c) influence of data presentation order on inferences; and (d) error reduction through pretraining. Without pretraining, a model based on local computations fitted data better than a Bayesian structural inference model. The data suggest that local computations serve as a heuristic for learning causal structure.</description><identifier>ISSN: 0278-7393</identifier><identifier>EISSN: 1939-1285</identifier><identifier>DOI: 10.1037/a0014928</identifier><identifier>PMID: 19379043</identifier><language>eng</language><publisher>Washington, DC: American Psychological Association</publisher><subject>Association Learning ; Bayesian Statistics ; Biological and medical sciences ; Causal Analysis ; Causal Models ; Causality ; Cognition. Intelligence ; Cues ; Decision Making ; Experimental psychology ; Experiments ; Feedback ; Fundamental and applied biological sciences. Psychology ; Heuristics ; Human ; Humans ; Hypotheses ; Imagination ; Inference ; Inferences ; Information processing ; Knowledge of Results (Psychology) ; Learning ; Learning. Memory ; Memory ; Mental Recall ; Motion Perception ; Orientation ; Practice (Psychology) ; Problem Solving ; Psychological Theories ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Reasoning. Problem solving ; Statistical Probability</subject><ispartof>Journal of experimental psychology. Learning, memory, and cognition, 2009-05, Vol.35 (3), p.678-693</ispartof><rights>2009 American Psychological Association</rights><rights>2009 INIST-CNRS</rights><rights>Copyright 2009 APA, all rights reserved.</rights><rights>Copyright American Psychological Association May 2009</rights><rights>2009, American Psychological Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a415t-ef016fc381059dd5502e8204393a5bf24d588ab84f6040ab681e8f1c1f5f1c4b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ836528$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21479390$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19379043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernbach, Philip M</creatorcontrib><creatorcontrib>Sloman, Steven A</creatorcontrib><title>Causal Learning With Local Computations</title><title>Journal of experimental psychology. Learning, memory, and cognition</title><addtitle>J Exp Psychol Learn Mem Cogn</addtitle><description>The authors proposed and tested a psychological theory of causal structure learning based on
local computations
. Local computations simplify complex learning problems via cues available on individual trials to update a single causal structure hypothesis. Structural inferences from local computations make minimal demands on memory, require relatively small amounts of data, and need not respect normative prescriptions as inferences that are principled locally may violate those principles when combined. Over a series of 3 experiments, the authors found (a) systematic inferences from small amounts of data; (b) systematic inference of extraneous causal links; (c) influence of data presentation order on inferences; and (d) error reduction through pretraining. Without pretraining, a model based on local computations fitted data better than a Bayesian structural inference model. The data suggest that local computations serve as a heuristic for learning causal structure.</description><subject>Association Learning</subject><subject>Bayesian Statistics</subject><subject>Biological and medical sciences</subject><subject>Causal Analysis</subject><subject>Causal Models</subject><subject>Causality</subject><subject>Cognition. Intelligence</subject><subject>Cues</subject><subject>Decision Making</subject><subject>Experimental psychology</subject><subject>Experiments</subject><subject>Feedback</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Heuristics</subject><subject>Human</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Imagination</subject><subject>Inference</subject><subject>Inferences</subject><subject>Information processing</subject><subject>Knowledge of Results (Psychology)</subject><subject>Learning</subject><subject>Learning. Memory</subject><subject>Memory</subject><subject>Mental Recall</subject><subject>Motion Perception</subject><subject>Orientation</subject><subject>Practice (Psychology)</subject><subject>Problem Solving</subject><subject>Psychological Theories</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Reasoning. Problem solving</subject><subject>Statistical Probability</subject><issn>0278-7393</issn><issn>1939-1285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><recordid>eNp90UlLxDAUB_Agio4L-AFEBnG7VLO2yVGKKwNeFI_hNZNoh24mLei3N-OMI3gwhwTyfrwX_kFon-ALgll2CRgTrqhcQyOimEoIlWIdjTDNZJIxxbbQdggzPF9MbqKtiDKFORuhsxyGANV4YsE3ZfM6fin7t_GkNfEub-tu6KEv2ybsog0HVbB7y3MHPd9cP-V3yeTx9j6_miTAiegT6zBJnWGSYKGmUyEwtZLGSYqBKBzlUyElFJK7FHMMRSqJlY4Y4kTcecF20Omib-fb98GGXtdlMLaqoLHtEDTFWDJOWIRHf-CsHXwT36ZTwrlSqZD_IUo4SyWlJKLzBTK-DcFbpztf1uA_NcF6Hq_-iTfSw2W_oajt9Bcu84zgZAkgxAidh8aUYeXi0Cz-D47uYOGsL82qfP0gWSq-5xwvytCB7sKnAd-XprJBf1S1ZkIznWaSfQE1xJNH</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Fernbach, Philip M</creator><creator>Sloman, Steven A</creator><general>American Psychological Association</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PSYQQ</scope><scope>7TK</scope></search><sort><creationdate>20090501</creationdate><title>Causal Learning With Local Computations</title><author>Fernbach, Philip M ; Sloman, Steven A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a415t-ef016fc381059dd5502e8204393a5bf24d588ab84f6040ab681e8f1c1f5f1c4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Association Learning</topic><topic>Bayesian Statistics</topic><topic>Biological and medical sciences</topic><topic>Causal Analysis</topic><topic>Causal Models</topic><topic>Causality</topic><topic>Cognition. Intelligence</topic><topic>Cues</topic><topic>Decision Making</topic><topic>Experimental psychology</topic><topic>Experiments</topic><topic>Feedback</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Heuristics</topic><topic>Human</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Imagination</topic><topic>Inference</topic><topic>Inferences</topic><topic>Information processing</topic><topic>Knowledge of Results (Psychology)</topic><topic>Learning</topic><topic>Learning. Memory</topic><topic>Memory</topic><topic>Mental Recall</topic><topic>Motion Perception</topic><topic>Orientation</topic><topic>Practice (Psychology)</topic><topic>Problem Solving</topic><topic>Psychological Theories</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Reasoning. Problem solving</topic><topic>Statistical Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernbach, Philip M</creatorcontrib><creatorcontrib>Sloman, Steven A</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PsycARTICLES (ProQuest)</collection><collection>ProQuest One Psychology</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of experimental psychology. Learning, memory, and cognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernbach, Philip M</au><au>Sloman, Steven A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ836528</ericid><atitle>Causal Learning With Local Computations</atitle><jtitle>Journal of experimental psychology. Learning, memory, and cognition</jtitle><addtitle>J Exp Psychol Learn Mem Cogn</addtitle><date>2009-05-01</date><risdate>2009</risdate><volume>35</volume><issue>3</issue><spage>678</spage><epage>693</epage><pages>678-693</pages><issn>0278-7393</issn><eissn>1939-1285</eissn><abstract>The authors proposed and tested a psychological theory of causal structure learning based on
local computations
. Local computations simplify complex learning problems via cues available on individual trials to update a single causal structure hypothesis. Structural inferences from local computations make minimal demands on memory, require relatively small amounts of data, and need not respect normative prescriptions as inferences that are principled locally may violate those principles when combined. Over a series of 3 experiments, the authors found (a) systematic inferences from small amounts of data; (b) systematic inference of extraneous causal links; (c) influence of data presentation order on inferences; and (d) error reduction through pretraining. Without pretraining, a model based on local computations fitted data better than a Bayesian structural inference model. The data suggest that local computations serve as a heuristic for learning causal structure.</abstract><cop>Washington, DC</cop><pub>American Psychological Association</pub><pmid>19379043</pmid><doi>10.1037/a0014928</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-7393 |
ispartof | Journal of experimental psychology. Learning, memory, and cognition, 2009-05, Vol.35 (3), p.678-693 |
issn | 0278-7393 1939-1285 |
language | eng |
recordid | cdi_proquest_miscellaneous_20083413 |
source | ERIC; EBSCOhost APA PsycARTICLES |
subjects | Association Learning Bayesian Statistics Biological and medical sciences Causal Analysis Causal Models Causality Cognition. Intelligence Cues Decision Making Experimental psychology Experiments Feedback Fundamental and applied biological sciences. Psychology Heuristics Human Humans Hypotheses Imagination Inference Inferences Information processing Knowledge of Results (Psychology) Learning Learning. Memory Memory Mental Recall Motion Perception Orientation Practice (Psychology) Problem Solving Psychological Theories Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Reasoning. Problem solving Statistical Probability |
title | Causal Learning With Local Computations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A27%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Causal%20Learning%20With%20Local%20Computations&rft.jtitle=Journal%20of%20experimental%20psychology.%20Learning,%20memory,%20and%20cognition&rft.au=Fernbach,%20Philip%20M&rft.date=2009-05-01&rft.volume=35&rft.issue=3&rft.spage=678&rft.epage=693&rft.pages=678-693&rft.issn=0278-7393&rft.eissn=1939-1285&rft_id=info:doi/10.1037/a0014928&rft_dat=%3Cproquest_cross%3E1726803781%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a415t-ef016fc381059dd5502e8204393a5bf24d588ab84f6040ab681e8f1c1f5f1c4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=614499658&rft_id=info:pmid/19379043&rft_ericid=EJ836528&rfr_iscdi=true |