Loading…

Causal Learning With Local Computations

The authors proposed and tested a psychological theory of causal structure learning based on local computations . Local computations simplify complex learning problems via cues available on individual trials to update a single causal structure hypothesis. Structural inferences from local computation...

Full description

Saved in:
Bibliographic Details
Published in:Journal of experimental psychology. Learning, memory, and cognition memory, and cognition, 2009-05, Vol.35 (3), p.678-693
Main Authors: Fernbach, Philip M, Sloman, Steven A
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a415t-ef016fc381059dd5502e8204393a5bf24d588ab84f6040ab681e8f1c1f5f1c4b3
cites
container_end_page 693
container_issue 3
container_start_page 678
container_title Journal of experimental psychology. Learning, memory, and cognition
container_volume 35
creator Fernbach, Philip M
Sloman, Steven A
description The authors proposed and tested a psychological theory of causal structure learning based on local computations . Local computations simplify complex learning problems via cues available on individual trials to update a single causal structure hypothesis. Structural inferences from local computations make minimal demands on memory, require relatively small amounts of data, and need not respect normative prescriptions as inferences that are principled locally may violate those principles when combined. Over a series of 3 experiments, the authors found (a) systematic inferences from small amounts of data; (b) systematic inference of extraneous causal links; (c) influence of data presentation order on inferences; and (d) error reduction through pretraining. Without pretraining, a model based on local computations fitted data better than a Bayesian structural inference model. The data suggest that local computations serve as a heuristic for learning causal structure.
doi_str_mv 10.1037/a0014928
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20083413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ836528</ericid><sourcerecordid>1726803781</sourcerecordid><originalsourceid>FETCH-LOGICAL-a415t-ef016fc381059dd5502e8204393a5bf24d588ab84f6040ab681e8f1c1f5f1c4b3</originalsourceid><addsrcrecordid>eNp90UlLxDAUB_Agio4L-AFEBnG7VLO2yVGKKwNeFI_hNZNoh24mLei3N-OMI3gwhwTyfrwX_kFon-ALgll2CRgTrqhcQyOimEoIlWIdjTDNZJIxxbbQdggzPF9MbqKtiDKFORuhsxyGANV4YsE3ZfM6fin7t_GkNfEub-tu6KEv2ybsog0HVbB7y3MHPd9cP-V3yeTx9j6_miTAiegT6zBJnWGSYKGmUyEwtZLGSYqBKBzlUyElFJK7FHMMRSqJlY4Y4kTcecF20Omib-fb98GGXtdlMLaqoLHtEDTFWDJOWIRHf-CsHXwT36ZTwrlSqZD_IUo4SyWlJKLzBTK-DcFbpztf1uA_NcF6Hq_-iTfSw2W_oajt9Bcu84zgZAkgxAidh8aUYeXi0Cz-D47uYOGsL82qfP0gWSq-5xwvytCB7sKnAd-XprJBf1S1ZkIznWaSfQE1xJNH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>614499658</pqid></control><display><type>article</type><title>Causal Learning With Local Computations</title><source>ERIC</source><source>EBSCOhost APA PsycARTICLES</source><creator>Fernbach, Philip M ; Sloman, Steven A</creator><creatorcontrib>Fernbach, Philip M ; Sloman, Steven A</creatorcontrib><description>The authors proposed and tested a psychological theory of causal structure learning based on local computations . Local computations simplify complex learning problems via cues available on individual trials to update a single causal structure hypothesis. Structural inferences from local computations make minimal demands on memory, require relatively small amounts of data, and need not respect normative prescriptions as inferences that are principled locally may violate those principles when combined. Over a series of 3 experiments, the authors found (a) systematic inferences from small amounts of data; (b) systematic inference of extraneous causal links; (c) influence of data presentation order on inferences; and (d) error reduction through pretraining. Without pretraining, a model based on local computations fitted data better than a Bayesian structural inference model. The data suggest that local computations serve as a heuristic for learning causal structure.</description><identifier>ISSN: 0278-7393</identifier><identifier>EISSN: 1939-1285</identifier><identifier>DOI: 10.1037/a0014928</identifier><identifier>PMID: 19379043</identifier><language>eng</language><publisher>Washington, DC: American Psychological Association</publisher><subject>Association Learning ; Bayesian Statistics ; Biological and medical sciences ; Causal Analysis ; Causal Models ; Causality ; Cognition. Intelligence ; Cues ; Decision Making ; Experimental psychology ; Experiments ; Feedback ; Fundamental and applied biological sciences. Psychology ; Heuristics ; Human ; Humans ; Hypotheses ; Imagination ; Inference ; Inferences ; Information processing ; Knowledge of Results (Psychology) ; Learning ; Learning. Memory ; Memory ; Mental Recall ; Motion Perception ; Orientation ; Practice (Psychology) ; Problem Solving ; Psychological Theories ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Reasoning. Problem solving ; Statistical Probability</subject><ispartof>Journal of experimental psychology. Learning, memory, and cognition, 2009-05, Vol.35 (3), p.678-693</ispartof><rights>2009 American Psychological Association</rights><rights>2009 INIST-CNRS</rights><rights>Copyright 2009 APA, all rights reserved.</rights><rights>Copyright American Psychological Association May 2009</rights><rights>2009, American Psychological Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a415t-ef016fc381059dd5502e8204393a5bf24d588ab84f6040ab681e8f1c1f5f1c4b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ836528$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21479390$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19379043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernbach, Philip M</creatorcontrib><creatorcontrib>Sloman, Steven A</creatorcontrib><title>Causal Learning With Local Computations</title><title>Journal of experimental psychology. Learning, memory, and cognition</title><addtitle>J Exp Psychol Learn Mem Cogn</addtitle><description>The authors proposed and tested a psychological theory of causal structure learning based on local computations . Local computations simplify complex learning problems via cues available on individual trials to update a single causal structure hypothesis. Structural inferences from local computations make minimal demands on memory, require relatively small amounts of data, and need not respect normative prescriptions as inferences that are principled locally may violate those principles when combined. Over a series of 3 experiments, the authors found (a) systematic inferences from small amounts of data; (b) systematic inference of extraneous causal links; (c) influence of data presentation order on inferences; and (d) error reduction through pretraining. Without pretraining, a model based on local computations fitted data better than a Bayesian structural inference model. The data suggest that local computations serve as a heuristic for learning causal structure.</description><subject>Association Learning</subject><subject>Bayesian Statistics</subject><subject>Biological and medical sciences</subject><subject>Causal Analysis</subject><subject>Causal Models</subject><subject>Causality</subject><subject>Cognition. Intelligence</subject><subject>Cues</subject><subject>Decision Making</subject><subject>Experimental psychology</subject><subject>Experiments</subject><subject>Feedback</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Heuristics</subject><subject>Human</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Imagination</subject><subject>Inference</subject><subject>Inferences</subject><subject>Information processing</subject><subject>Knowledge of Results (Psychology)</subject><subject>Learning</subject><subject>Learning. Memory</subject><subject>Memory</subject><subject>Mental Recall</subject><subject>Motion Perception</subject><subject>Orientation</subject><subject>Practice (Psychology)</subject><subject>Problem Solving</subject><subject>Psychological Theories</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Reasoning. Problem solving</subject><subject>Statistical Probability</subject><issn>0278-7393</issn><issn>1939-1285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><recordid>eNp90UlLxDAUB_Agio4L-AFEBnG7VLO2yVGKKwNeFI_hNZNoh24mLei3N-OMI3gwhwTyfrwX_kFon-ALgll2CRgTrqhcQyOimEoIlWIdjTDNZJIxxbbQdggzPF9MbqKtiDKFORuhsxyGANV4YsE3ZfM6fin7t_GkNfEub-tu6KEv2ybsog0HVbB7y3MHPd9cP-V3yeTx9j6_miTAiegT6zBJnWGSYKGmUyEwtZLGSYqBKBzlUyElFJK7FHMMRSqJlY4Y4kTcecF20Omib-fb98GGXtdlMLaqoLHtEDTFWDJOWIRHf-CsHXwT36ZTwrlSqZD_IUo4SyWlJKLzBTK-DcFbpztf1uA_NcF6Hq_-iTfSw2W_oajt9Bcu84zgZAkgxAidh8aUYeXi0Cz-D47uYOGsL82qfP0gWSq-5xwvytCB7sKnAd-XprJBf1S1ZkIznWaSfQE1xJNH</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Fernbach, Philip M</creator><creator>Sloman, Steven A</creator><general>American Psychological Association</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PSYQQ</scope><scope>7TK</scope></search><sort><creationdate>20090501</creationdate><title>Causal Learning With Local Computations</title><author>Fernbach, Philip M ; Sloman, Steven A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a415t-ef016fc381059dd5502e8204393a5bf24d588ab84f6040ab681e8f1c1f5f1c4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Association Learning</topic><topic>Bayesian Statistics</topic><topic>Biological and medical sciences</topic><topic>Causal Analysis</topic><topic>Causal Models</topic><topic>Causality</topic><topic>Cognition. Intelligence</topic><topic>Cues</topic><topic>Decision Making</topic><topic>Experimental psychology</topic><topic>Experiments</topic><topic>Feedback</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Heuristics</topic><topic>Human</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Imagination</topic><topic>Inference</topic><topic>Inferences</topic><topic>Information processing</topic><topic>Knowledge of Results (Psychology)</topic><topic>Learning</topic><topic>Learning. Memory</topic><topic>Memory</topic><topic>Mental Recall</topic><topic>Motion Perception</topic><topic>Orientation</topic><topic>Practice (Psychology)</topic><topic>Problem Solving</topic><topic>Psychological Theories</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Reasoning. Problem solving</topic><topic>Statistical Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernbach, Philip M</creatorcontrib><creatorcontrib>Sloman, Steven A</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PsycARTICLES (ProQuest)</collection><collection>ProQuest One Psychology</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of experimental psychology. Learning, memory, and cognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernbach, Philip M</au><au>Sloman, Steven A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ836528</ericid><atitle>Causal Learning With Local Computations</atitle><jtitle>Journal of experimental psychology. Learning, memory, and cognition</jtitle><addtitle>J Exp Psychol Learn Mem Cogn</addtitle><date>2009-05-01</date><risdate>2009</risdate><volume>35</volume><issue>3</issue><spage>678</spage><epage>693</epage><pages>678-693</pages><issn>0278-7393</issn><eissn>1939-1285</eissn><abstract>The authors proposed and tested a psychological theory of causal structure learning based on local computations . Local computations simplify complex learning problems via cues available on individual trials to update a single causal structure hypothesis. Structural inferences from local computations make minimal demands on memory, require relatively small amounts of data, and need not respect normative prescriptions as inferences that are principled locally may violate those principles when combined. Over a series of 3 experiments, the authors found (a) systematic inferences from small amounts of data; (b) systematic inference of extraneous causal links; (c) influence of data presentation order on inferences; and (d) error reduction through pretraining. Without pretraining, a model based on local computations fitted data better than a Bayesian structural inference model. The data suggest that local computations serve as a heuristic for learning causal structure.</abstract><cop>Washington, DC</cop><pub>American Psychological Association</pub><pmid>19379043</pmid><doi>10.1037/a0014928</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-7393
ispartof Journal of experimental psychology. Learning, memory, and cognition, 2009-05, Vol.35 (3), p.678-693
issn 0278-7393
1939-1285
language eng
recordid cdi_proquest_miscellaneous_20083413
source ERIC; EBSCOhost APA PsycARTICLES
subjects Association Learning
Bayesian Statistics
Biological and medical sciences
Causal Analysis
Causal Models
Causality
Cognition. Intelligence
Cues
Decision Making
Experimental psychology
Experiments
Feedback
Fundamental and applied biological sciences. Psychology
Heuristics
Human
Humans
Hypotheses
Imagination
Inference
Inferences
Information processing
Knowledge of Results (Psychology)
Learning
Learning. Memory
Memory
Mental Recall
Motion Perception
Orientation
Practice (Psychology)
Problem Solving
Psychological Theories
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Reasoning. Problem solving
Statistical Probability
title Causal Learning With Local Computations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A27%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Causal%20Learning%20With%20Local%20Computations&rft.jtitle=Journal%20of%20experimental%20psychology.%20Learning,%20memory,%20and%20cognition&rft.au=Fernbach,%20Philip%20M&rft.date=2009-05-01&rft.volume=35&rft.issue=3&rft.spage=678&rft.epage=693&rft.pages=678-693&rft.issn=0278-7393&rft.eissn=1939-1285&rft_id=info:doi/10.1037/a0014928&rft_dat=%3Cproquest_cross%3E1726803781%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a415t-ef016fc381059dd5502e8204393a5bf24d588ab84f6040ab681e8f1c1f5f1c4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=614499658&rft_id=info:pmid/19379043&rft_ericid=EJ836528&rfr_iscdi=true