Loading…
Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation
[Display omitted] Precise and accurate measurement of viscoelastic mechanical properties becomes increasingly challenging as sample stiffness decreases to elastic moduli
Saved in:
Published in: | Acta biomaterialia 2018-04, Vol.71, p.388-397 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c436t-fa362be24af59e8bd9727b79e0f15a651e00fb17bd89c569d0a1f65b8bf3f5c43 |
---|---|
cites | cdi_FETCH-LOGICAL-c436t-fa362be24af59e8bd9727b79e0f15a651e00fb17bd89c569d0a1f65b8bf3f5c43 |
container_end_page | 397 |
container_issue | |
container_start_page | 388 |
container_title | Acta biomaterialia |
container_volume | 71 |
creator | Mijailovic, Aleksandar S. Qing, Bo Fortunato, Daniel Van Vliet, Krystyn J. |
description | [Display omitted]
Precise and accurate measurement of viscoelastic mechanical properties becomes increasingly challenging as sample stiffness decreases to elastic moduli |
doi_str_mv | 10.1016/j.actbio.2018.02.017 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2008367027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706118300874</els_id><sourcerecordid>2008367027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-fa362be24af59e8bd9727b79e0f15a651e00fb17bd89c569d0a1f65b8bf3f5c43</originalsourceid><addsrcrecordid>eNp9kTuP1DAUhSMEYpeFf4CQJRqaBNuJH2mQ0IiXtBIN1JbtXM94lNjBdlaaLfjteJiFgoLKLr5z7rn3NM1LgjuCCX977LQtxseOYiI7TDtMxKPmmkghW8G4fFz_YqCtwJxcNc9yPmLcS0Ll0-aKjoMQA2PXzc_dQadqBMnf-7BHdz7bCLPOxVu0gD3o4K2e0ZriCql4yCg6dPD7w3xCNi7r7HUoaI3zaYGUkQ4TqqHmuP8tKz7nrWq2fDb3y1pHIR8mCEUXH8Pz5onTc4YXD-9N8_3jh2-7z-3t109fdu9vWzv0vLRO95waoIN2bARpplFQYcQI2BGmOSOAsTNEmEmOlvFxwpo4zow0rnesetw0by6-dY8fNVBRS10U5lkHiFtWFGPZc4GpqOjrf9Bj3FKo6SoluaSCE1yp4ULZFHNO4NSa_KLTSRGszv2oo7r0o879KExV7afKXj2Yb2aB6a_oTyEVeHcBoF7jzkNS2XoIFiafwBY1Rf__Cb8AMeOmiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086827610</pqid></control><display><type>article</type><title>Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation</title><source>Elsevier</source><creator>Mijailovic, Aleksandar S. ; Qing, Bo ; Fortunato, Daniel ; Van Vliet, Krystyn J.</creator><creatorcontrib>Mijailovic, Aleksandar S. ; Qing, Bo ; Fortunato, Daniel ; Van Vliet, Krystyn J.</creatorcontrib><description>[Display omitted]
Precise and accurate measurement of viscoelastic mechanical properties becomes increasingly challenging as sample stiffness decreases to elastic moduli <1 kPa, largely due to difficulties detecting initial contact with the compliant sample surface. This limitation is particularly relevant to characterization of biological soft tissues and compliant gels. Here, we employ impact indentation which, in contrast to shear rheology and conventional indentation, does not require contact detection a priori, and present a novel method to extract viscoelastic moduli and relaxation time constants directly from the impact response. We first validate our approach by using both impact indentation and shear rheology to characterize polydimethylsiloxane (PDMS) elastomers of stiffness ranging from 100 s of Pa to nearly 10 kPa. Assuming a linear viscoelastic constitutive model for the material, we find that the moduli and relaxation times obtained from fitting the impact response agree well with those obtained from fitting the rheological response. Next, we demonstrate our validated method on hydrated, biological soft tissues obtained from porcine brain, murine liver, and murine heart, and report the equilibrium shear moduli, instantaneous shear moduli, and relaxation time constants for each tissue. Together, our findings provide a new and straightforward approach capable of probing local mechanical properties of highly compliant viscoelastic materials with millimeter scale spatial resolution, mitigating complications involving contact detection or sample geometric constraints.
Characterization and optimization of mechanical properties can be essential for the proper function of biomaterials in diverse applications. However, precise and accurate measurement of viscoelastic mechanical properties becomes increasingly difficult with increased compliance (particularly for elastic moduli <1 kPa), largely due to challenges detecting initial contact with the compliant sample surface and measuring response at short timescale or high frequency. By contrast, impact indentation has highly accurate contact detection and can be used to measure short timescale (glassy) response. Here, we demonstrate an experimental and analytical method that confers significant advantages over existing approaches to extract spatially resolved viscoelastic moduli and characteristic time constants of biological tissues (e.g., brain and heart) and engineered biomaterials.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2018.02.017</identifier><identifier>PMID: 29477455</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Biomaterials ; Biomechanics ; Biomedical materials ; Brain ; Brain Chemistry ; Complications ; Constitutive models ; Dimethylpolysiloxanes - chemistry ; Elastic Modulus ; Elastomers ; Elastomers - chemistry ; Gels ; Geometric constraints ; Impact response ; Indentation ; Liver ; Liver - chemistry ; Mechanical characterization ; Mechanical properties ; Mice ; Models, Chemical ; Modulus of elasticity ; Myocardium - chemistry ; Nylons - chemistry ; Optimization ; Polydimethylsiloxane ; Polymer mechanics ; Polymers ; Relaxation time ; Rheological properties ; Rheology ; Shear modulus ; Shear stress ; Silicone resins ; Soft tissues ; Spatial discrimination ; Spatial resolution ; Stiffness ; Stress relaxation ; Swine ; Time ; Tissues ; Viscoelastic materials ; Viscoelasticity</subject><ispartof>Acta biomaterialia, 2018-04, Vol.71, p.388-397</ispartof><rights>2018 Acta Materialia Inc.</rights><rights>Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Apr 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-fa362be24af59e8bd9727b79e0f15a651e00fb17bd89c569d0a1f65b8bf3f5c43</citedby><cites>FETCH-LOGICAL-c436t-fa362be24af59e8bd9727b79e0f15a651e00fb17bd89c569d0a1f65b8bf3f5c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29477455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mijailovic, Aleksandar S.</creatorcontrib><creatorcontrib>Qing, Bo</creatorcontrib><creatorcontrib>Fortunato, Daniel</creatorcontrib><creatorcontrib>Van Vliet, Krystyn J.</creatorcontrib><title>Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>[Display omitted]
Precise and accurate measurement of viscoelastic mechanical properties becomes increasingly challenging as sample stiffness decreases to elastic moduli <1 kPa, largely due to difficulties detecting initial contact with the compliant sample surface. This limitation is particularly relevant to characterization of biological soft tissues and compliant gels. Here, we employ impact indentation which, in contrast to shear rheology and conventional indentation, does not require contact detection a priori, and present a novel method to extract viscoelastic moduli and relaxation time constants directly from the impact response. We first validate our approach by using both impact indentation and shear rheology to characterize polydimethylsiloxane (PDMS) elastomers of stiffness ranging from 100 s of Pa to nearly 10 kPa. Assuming a linear viscoelastic constitutive model for the material, we find that the moduli and relaxation times obtained from fitting the impact response agree well with those obtained from fitting the rheological response. Next, we demonstrate our validated method on hydrated, biological soft tissues obtained from porcine brain, murine liver, and murine heart, and report the equilibrium shear moduli, instantaneous shear moduli, and relaxation time constants for each tissue. Together, our findings provide a new and straightforward approach capable of probing local mechanical properties of highly compliant viscoelastic materials with millimeter scale spatial resolution, mitigating complications involving contact detection or sample geometric constraints.
Characterization and optimization of mechanical properties can be essential for the proper function of biomaterials in diverse applications. However, precise and accurate measurement of viscoelastic mechanical properties becomes increasingly difficult with increased compliance (particularly for elastic moduli <1 kPa), largely due to challenges detecting initial contact with the compliant sample surface and measuring response at short timescale or high frequency. By contrast, impact indentation has highly accurate contact detection and can be used to measure short timescale (glassy) response. Here, we demonstrate an experimental and analytical method that confers significant advantages over existing approaches to extract spatially resolved viscoelastic moduli and characteristic time constants of biological tissues (e.g., brain and heart) and engineered biomaterials.</description><subject>Animals</subject><subject>Biomaterials</subject><subject>Biomechanics</subject><subject>Biomedical materials</subject><subject>Brain</subject><subject>Brain Chemistry</subject><subject>Complications</subject><subject>Constitutive models</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Elastic Modulus</subject><subject>Elastomers</subject><subject>Elastomers - chemistry</subject><subject>Gels</subject><subject>Geometric constraints</subject><subject>Impact response</subject><subject>Indentation</subject><subject>Liver</subject><subject>Liver - chemistry</subject><subject>Mechanical characterization</subject><subject>Mechanical properties</subject><subject>Mice</subject><subject>Models, Chemical</subject><subject>Modulus of elasticity</subject><subject>Myocardium - chemistry</subject><subject>Nylons - chemistry</subject><subject>Optimization</subject><subject>Polydimethylsiloxane</subject><subject>Polymer mechanics</subject><subject>Polymers</subject><subject>Relaxation time</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shear modulus</subject><subject>Shear stress</subject><subject>Silicone resins</subject><subject>Soft tissues</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Stiffness</subject><subject>Stress relaxation</subject><subject>Swine</subject><subject>Time</subject><subject>Tissues</subject><subject>Viscoelastic materials</subject><subject>Viscoelasticity</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kTuP1DAUhSMEYpeFf4CQJRqaBNuJH2mQ0IiXtBIN1JbtXM94lNjBdlaaLfjteJiFgoLKLr5z7rn3NM1LgjuCCX977LQtxseOYiI7TDtMxKPmmkghW8G4fFz_YqCtwJxcNc9yPmLcS0Ll0-aKjoMQA2PXzc_dQadqBMnf-7BHdz7bCLPOxVu0gD3o4K2e0ZriCql4yCg6dPD7w3xCNi7r7HUoaI3zaYGUkQ4TqqHmuP8tKz7nrWq2fDb3y1pHIR8mCEUXH8Pz5onTc4YXD-9N8_3jh2-7z-3t109fdu9vWzv0vLRO95waoIN2bARpplFQYcQI2BGmOSOAsTNEmEmOlvFxwpo4zow0rnesetw0by6-dY8fNVBRS10U5lkHiFtWFGPZc4GpqOjrf9Bj3FKo6SoluaSCE1yp4ULZFHNO4NSa_KLTSRGszv2oo7r0o879KExV7afKXj2Yb2aB6a_oTyEVeHcBoF7jzkNS2XoIFiafwBY1Rf__Cb8AMeOmiw</recordid><startdate>20180415</startdate><enddate>20180415</enddate><creator>Mijailovic, Aleksandar S.</creator><creator>Qing, Bo</creator><creator>Fortunato, Daniel</creator><creator>Van Vliet, Krystyn J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20180415</creationdate><title>Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation</title><author>Mijailovic, Aleksandar S. ; Qing, Bo ; Fortunato, Daniel ; Van Vliet, Krystyn J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-fa362be24af59e8bd9727b79e0f15a651e00fb17bd89c569d0a1f65b8bf3f5c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Biomaterials</topic><topic>Biomechanics</topic><topic>Biomedical materials</topic><topic>Brain</topic><topic>Brain Chemistry</topic><topic>Complications</topic><topic>Constitutive models</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Elastic Modulus</topic><topic>Elastomers</topic><topic>Elastomers - chemistry</topic><topic>Gels</topic><topic>Geometric constraints</topic><topic>Impact response</topic><topic>Indentation</topic><topic>Liver</topic><topic>Liver - chemistry</topic><topic>Mechanical characterization</topic><topic>Mechanical properties</topic><topic>Mice</topic><topic>Models, Chemical</topic><topic>Modulus of elasticity</topic><topic>Myocardium - chemistry</topic><topic>Nylons - chemistry</topic><topic>Optimization</topic><topic>Polydimethylsiloxane</topic><topic>Polymer mechanics</topic><topic>Polymers</topic><topic>Relaxation time</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shear modulus</topic><topic>Shear stress</topic><topic>Silicone resins</topic><topic>Soft tissues</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Stiffness</topic><topic>Stress relaxation</topic><topic>Swine</topic><topic>Time</topic><topic>Tissues</topic><topic>Viscoelastic materials</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mijailovic, Aleksandar S.</creatorcontrib><creatorcontrib>Qing, Bo</creatorcontrib><creatorcontrib>Fortunato, Daniel</creatorcontrib><creatorcontrib>Van Vliet, Krystyn J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mijailovic, Aleksandar S.</au><au>Qing, Bo</au><au>Fortunato, Daniel</au><au>Van Vliet, Krystyn J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2018-04-15</date><risdate>2018</risdate><volume>71</volume><spage>388</spage><epage>397</epage><pages>388-397</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>[Display omitted]
Precise and accurate measurement of viscoelastic mechanical properties becomes increasingly challenging as sample stiffness decreases to elastic moduli <1 kPa, largely due to difficulties detecting initial contact with the compliant sample surface. This limitation is particularly relevant to characterization of biological soft tissues and compliant gels. Here, we employ impact indentation which, in contrast to shear rheology and conventional indentation, does not require contact detection a priori, and present a novel method to extract viscoelastic moduli and relaxation time constants directly from the impact response. We first validate our approach by using both impact indentation and shear rheology to characterize polydimethylsiloxane (PDMS) elastomers of stiffness ranging from 100 s of Pa to nearly 10 kPa. Assuming a linear viscoelastic constitutive model for the material, we find that the moduli and relaxation times obtained from fitting the impact response agree well with those obtained from fitting the rheological response. Next, we demonstrate our validated method on hydrated, biological soft tissues obtained from porcine brain, murine liver, and murine heart, and report the equilibrium shear moduli, instantaneous shear moduli, and relaxation time constants for each tissue. Together, our findings provide a new and straightforward approach capable of probing local mechanical properties of highly compliant viscoelastic materials with millimeter scale spatial resolution, mitigating complications involving contact detection or sample geometric constraints.
Characterization and optimization of mechanical properties can be essential for the proper function of biomaterials in diverse applications. However, precise and accurate measurement of viscoelastic mechanical properties becomes increasingly difficult with increased compliance (particularly for elastic moduli <1 kPa), largely due to challenges detecting initial contact with the compliant sample surface and measuring response at short timescale or high frequency. By contrast, impact indentation has highly accurate contact detection and can be used to measure short timescale (glassy) response. Here, we demonstrate an experimental and analytical method that confers significant advantages over existing approaches to extract spatially resolved viscoelastic moduli and characteristic time constants of biological tissues (e.g., brain and heart) and engineered biomaterials.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>29477455</pmid><doi>10.1016/j.actbio.2018.02.017</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2018-04, Vol.71, p.388-397 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_2008367027 |
source | Elsevier |
subjects | Animals Biomaterials Biomechanics Biomedical materials Brain Brain Chemistry Complications Constitutive models Dimethylpolysiloxanes - chemistry Elastic Modulus Elastomers Elastomers - chemistry Gels Geometric constraints Impact response Indentation Liver Liver - chemistry Mechanical characterization Mechanical properties Mice Models, Chemical Modulus of elasticity Myocardium - chemistry Nylons - chemistry Optimization Polydimethylsiloxane Polymer mechanics Polymers Relaxation time Rheological properties Rheology Shear modulus Shear stress Silicone resins Soft tissues Spatial discrimination Spatial resolution Stiffness Stress relaxation Swine Time Tissues Viscoelastic materials Viscoelasticity |
title | Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20viscoelastic%20mechanical%20properties%20of%20highly%20compliant%20polymers%20and%20biological%20tissues%20using%20impact%20indentation&rft.jtitle=Acta%20biomaterialia&rft.au=Mijailovic,%20Aleksandar%20S.&rft.date=2018-04-15&rft.volume=71&rft.spage=388&rft.epage=397&rft.pages=388-397&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2018.02.017&rft_dat=%3Cproquest_cross%3E2008367027%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-fa362be24af59e8bd9727b79e0f15a651e00fb17bd89c569d0a1f65b8bf3f5c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086827610&rft_id=info:pmid/29477455&rfr_iscdi=true |