Loading…

Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation

[Display omitted] Precise and accurate measurement of viscoelastic mechanical properties becomes increasingly challenging as sample stiffness decreases to elastic moduli

Saved in:
Bibliographic Details
Published in:Acta biomaterialia 2018-04, Vol.71, p.388-397
Main Authors: Mijailovic, Aleksandar S., Qing, Bo, Fortunato, Daniel, Van Vliet, Krystyn J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c436t-fa362be24af59e8bd9727b79e0f15a651e00fb17bd89c569d0a1f65b8bf3f5c43
cites cdi_FETCH-LOGICAL-c436t-fa362be24af59e8bd9727b79e0f15a651e00fb17bd89c569d0a1f65b8bf3f5c43
container_end_page 397
container_issue
container_start_page 388
container_title Acta biomaterialia
container_volume 71
creator Mijailovic, Aleksandar S.
Qing, Bo
Fortunato, Daniel
Van Vliet, Krystyn J.
description [Display omitted] Precise and accurate measurement of viscoelastic mechanical properties becomes increasingly challenging as sample stiffness decreases to elastic moduli
doi_str_mv 10.1016/j.actbio.2018.02.017
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2008367027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706118300874</els_id><sourcerecordid>2008367027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-fa362be24af59e8bd9727b79e0f15a651e00fb17bd89c569d0a1f65b8bf3f5c43</originalsourceid><addsrcrecordid>eNp9kTuP1DAUhSMEYpeFf4CQJRqaBNuJH2mQ0IiXtBIN1JbtXM94lNjBdlaaLfjteJiFgoLKLr5z7rn3NM1LgjuCCX977LQtxseOYiI7TDtMxKPmmkghW8G4fFz_YqCtwJxcNc9yPmLcS0Ll0-aKjoMQA2PXzc_dQadqBMnf-7BHdz7bCLPOxVu0gD3o4K2e0ZriCql4yCg6dPD7w3xCNi7r7HUoaI3zaYGUkQ4TqqHmuP8tKz7nrWq2fDb3y1pHIR8mCEUXH8Pz5onTc4YXD-9N8_3jh2-7z-3t109fdu9vWzv0vLRO95waoIN2bARpplFQYcQI2BGmOSOAsTNEmEmOlvFxwpo4zow0rnesetw0by6-dY8fNVBRS10U5lkHiFtWFGPZc4GpqOjrf9Bj3FKo6SoluaSCE1yp4ULZFHNO4NSa_KLTSRGszv2oo7r0o879KExV7afKXj2Yb2aB6a_oTyEVeHcBoF7jzkNS2XoIFiafwBY1Rf__Cb8AMeOmiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086827610</pqid></control><display><type>article</type><title>Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation</title><source>Elsevier</source><creator>Mijailovic, Aleksandar S. ; Qing, Bo ; Fortunato, Daniel ; Van Vliet, Krystyn J.</creator><creatorcontrib>Mijailovic, Aleksandar S. ; Qing, Bo ; Fortunato, Daniel ; Van Vliet, Krystyn J.</creatorcontrib><description>[Display omitted] Precise and accurate measurement of viscoelastic mechanical properties becomes increasingly challenging as sample stiffness decreases to elastic moduli &lt;1 kPa, largely due to difficulties detecting initial contact with the compliant sample surface. This limitation is particularly relevant to characterization of biological soft tissues and compliant gels. Here, we employ impact indentation which, in contrast to shear rheology and conventional indentation, does not require contact detection a priori, and present a novel method to extract viscoelastic moduli and relaxation time constants directly from the impact response. We first validate our approach by using both impact indentation and shear rheology to characterize polydimethylsiloxane (PDMS) elastomers of stiffness ranging from 100 s of Pa to nearly 10 kPa. Assuming a linear viscoelastic constitutive model for the material, we find that the moduli and relaxation times obtained from fitting the impact response agree well with those obtained from fitting the rheological response. Next, we demonstrate our validated method on hydrated, biological soft tissues obtained from porcine brain, murine liver, and murine heart, and report the equilibrium shear moduli, instantaneous shear moduli, and relaxation time constants for each tissue. Together, our findings provide a new and straightforward approach capable of probing local mechanical properties of highly compliant viscoelastic materials with millimeter scale spatial resolution, mitigating complications involving contact detection or sample geometric constraints. Characterization and optimization of mechanical properties can be essential for the proper function of biomaterials in diverse applications. However, precise and accurate measurement of viscoelastic mechanical properties becomes increasingly difficult with increased compliance (particularly for elastic moduli &lt;1 kPa), largely due to challenges detecting initial contact with the compliant sample surface and measuring response at short timescale or high frequency. By contrast, impact indentation has highly accurate contact detection and can be used to measure short timescale (glassy) response. Here, we demonstrate an experimental and analytical method that confers significant advantages over existing approaches to extract spatially resolved viscoelastic moduli and characteristic time constants of biological tissues (e.g., brain and heart) and engineered biomaterials.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2018.02.017</identifier><identifier>PMID: 29477455</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Biomaterials ; Biomechanics ; Biomedical materials ; Brain ; Brain Chemistry ; Complications ; Constitutive models ; Dimethylpolysiloxanes - chemistry ; Elastic Modulus ; Elastomers ; Elastomers - chemistry ; Gels ; Geometric constraints ; Impact response ; Indentation ; Liver ; Liver - chemistry ; Mechanical characterization ; Mechanical properties ; Mice ; Models, Chemical ; Modulus of elasticity ; Myocardium - chemistry ; Nylons - chemistry ; Optimization ; Polydimethylsiloxane ; Polymer mechanics ; Polymers ; Relaxation time ; Rheological properties ; Rheology ; Shear modulus ; Shear stress ; Silicone resins ; Soft tissues ; Spatial discrimination ; Spatial resolution ; Stiffness ; Stress relaxation ; Swine ; Time ; Tissues ; Viscoelastic materials ; Viscoelasticity</subject><ispartof>Acta biomaterialia, 2018-04, Vol.71, p.388-397</ispartof><rights>2018 Acta Materialia Inc.</rights><rights>Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Apr 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-fa362be24af59e8bd9727b79e0f15a651e00fb17bd89c569d0a1f65b8bf3f5c43</citedby><cites>FETCH-LOGICAL-c436t-fa362be24af59e8bd9727b79e0f15a651e00fb17bd89c569d0a1f65b8bf3f5c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29477455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mijailovic, Aleksandar S.</creatorcontrib><creatorcontrib>Qing, Bo</creatorcontrib><creatorcontrib>Fortunato, Daniel</creatorcontrib><creatorcontrib>Van Vliet, Krystyn J.</creatorcontrib><title>Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>[Display omitted] Precise and accurate measurement of viscoelastic mechanical properties becomes increasingly challenging as sample stiffness decreases to elastic moduli &lt;1 kPa, largely due to difficulties detecting initial contact with the compliant sample surface. This limitation is particularly relevant to characterization of biological soft tissues and compliant gels. Here, we employ impact indentation which, in contrast to shear rheology and conventional indentation, does not require contact detection a priori, and present a novel method to extract viscoelastic moduli and relaxation time constants directly from the impact response. We first validate our approach by using both impact indentation and shear rheology to characterize polydimethylsiloxane (PDMS) elastomers of stiffness ranging from 100 s of Pa to nearly 10 kPa. Assuming a linear viscoelastic constitutive model for the material, we find that the moduli and relaxation times obtained from fitting the impact response agree well with those obtained from fitting the rheological response. Next, we demonstrate our validated method on hydrated, biological soft tissues obtained from porcine brain, murine liver, and murine heart, and report the equilibrium shear moduli, instantaneous shear moduli, and relaxation time constants for each tissue. Together, our findings provide a new and straightforward approach capable of probing local mechanical properties of highly compliant viscoelastic materials with millimeter scale spatial resolution, mitigating complications involving contact detection or sample geometric constraints. Characterization and optimization of mechanical properties can be essential for the proper function of biomaterials in diverse applications. However, precise and accurate measurement of viscoelastic mechanical properties becomes increasingly difficult with increased compliance (particularly for elastic moduli &lt;1 kPa), largely due to challenges detecting initial contact with the compliant sample surface and measuring response at short timescale or high frequency. By contrast, impact indentation has highly accurate contact detection and can be used to measure short timescale (glassy) response. Here, we demonstrate an experimental and analytical method that confers significant advantages over existing approaches to extract spatially resolved viscoelastic moduli and characteristic time constants of biological tissues (e.g., brain and heart) and engineered biomaterials.</description><subject>Animals</subject><subject>Biomaterials</subject><subject>Biomechanics</subject><subject>Biomedical materials</subject><subject>Brain</subject><subject>Brain Chemistry</subject><subject>Complications</subject><subject>Constitutive models</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Elastic Modulus</subject><subject>Elastomers</subject><subject>Elastomers - chemistry</subject><subject>Gels</subject><subject>Geometric constraints</subject><subject>Impact response</subject><subject>Indentation</subject><subject>Liver</subject><subject>Liver - chemistry</subject><subject>Mechanical characterization</subject><subject>Mechanical properties</subject><subject>Mice</subject><subject>Models, Chemical</subject><subject>Modulus of elasticity</subject><subject>Myocardium - chemistry</subject><subject>Nylons - chemistry</subject><subject>Optimization</subject><subject>Polydimethylsiloxane</subject><subject>Polymer mechanics</subject><subject>Polymers</subject><subject>Relaxation time</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shear modulus</subject><subject>Shear stress</subject><subject>Silicone resins</subject><subject>Soft tissues</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Stiffness</subject><subject>Stress relaxation</subject><subject>Swine</subject><subject>Time</subject><subject>Tissues</subject><subject>Viscoelastic materials</subject><subject>Viscoelasticity</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kTuP1DAUhSMEYpeFf4CQJRqaBNuJH2mQ0IiXtBIN1JbtXM94lNjBdlaaLfjteJiFgoLKLr5z7rn3NM1LgjuCCX977LQtxseOYiI7TDtMxKPmmkghW8G4fFz_YqCtwJxcNc9yPmLcS0Ll0-aKjoMQA2PXzc_dQadqBMnf-7BHdz7bCLPOxVu0gD3o4K2e0ZriCql4yCg6dPD7w3xCNi7r7HUoaI3zaYGUkQ4TqqHmuP8tKz7nrWq2fDb3y1pHIR8mCEUXH8Pz5onTc4YXD-9N8_3jh2-7z-3t109fdu9vWzv0vLRO95waoIN2bARpplFQYcQI2BGmOSOAsTNEmEmOlvFxwpo4zow0rnesetw0by6-dY8fNVBRS10U5lkHiFtWFGPZc4GpqOjrf9Bj3FKo6SoluaSCE1yp4ULZFHNO4NSa_KLTSRGszv2oo7r0o879KExV7afKXj2Yb2aB6a_oTyEVeHcBoF7jzkNS2XoIFiafwBY1Rf__Cb8AMeOmiw</recordid><startdate>20180415</startdate><enddate>20180415</enddate><creator>Mijailovic, Aleksandar S.</creator><creator>Qing, Bo</creator><creator>Fortunato, Daniel</creator><creator>Van Vliet, Krystyn J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20180415</creationdate><title>Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation</title><author>Mijailovic, Aleksandar S. ; Qing, Bo ; Fortunato, Daniel ; Van Vliet, Krystyn J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-fa362be24af59e8bd9727b79e0f15a651e00fb17bd89c569d0a1f65b8bf3f5c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Biomaterials</topic><topic>Biomechanics</topic><topic>Biomedical materials</topic><topic>Brain</topic><topic>Brain Chemistry</topic><topic>Complications</topic><topic>Constitutive models</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Elastic Modulus</topic><topic>Elastomers</topic><topic>Elastomers - chemistry</topic><topic>Gels</topic><topic>Geometric constraints</topic><topic>Impact response</topic><topic>Indentation</topic><topic>Liver</topic><topic>Liver - chemistry</topic><topic>Mechanical characterization</topic><topic>Mechanical properties</topic><topic>Mice</topic><topic>Models, Chemical</topic><topic>Modulus of elasticity</topic><topic>Myocardium - chemistry</topic><topic>Nylons - chemistry</topic><topic>Optimization</topic><topic>Polydimethylsiloxane</topic><topic>Polymer mechanics</topic><topic>Polymers</topic><topic>Relaxation time</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shear modulus</topic><topic>Shear stress</topic><topic>Silicone resins</topic><topic>Soft tissues</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Stiffness</topic><topic>Stress relaxation</topic><topic>Swine</topic><topic>Time</topic><topic>Tissues</topic><topic>Viscoelastic materials</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mijailovic, Aleksandar S.</creatorcontrib><creatorcontrib>Qing, Bo</creatorcontrib><creatorcontrib>Fortunato, Daniel</creatorcontrib><creatorcontrib>Van Vliet, Krystyn J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mijailovic, Aleksandar S.</au><au>Qing, Bo</au><au>Fortunato, Daniel</au><au>Van Vliet, Krystyn J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2018-04-15</date><risdate>2018</risdate><volume>71</volume><spage>388</spage><epage>397</epage><pages>388-397</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>[Display omitted] Precise and accurate measurement of viscoelastic mechanical properties becomes increasingly challenging as sample stiffness decreases to elastic moduli &lt;1 kPa, largely due to difficulties detecting initial contact with the compliant sample surface. This limitation is particularly relevant to characterization of biological soft tissues and compliant gels. Here, we employ impact indentation which, in contrast to shear rheology and conventional indentation, does not require contact detection a priori, and present a novel method to extract viscoelastic moduli and relaxation time constants directly from the impact response. We first validate our approach by using both impact indentation and shear rheology to characterize polydimethylsiloxane (PDMS) elastomers of stiffness ranging from 100 s of Pa to nearly 10 kPa. Assuming a linear viscoelastic constitutive model for the material, we find that the moduli and relaxation times obtained from fitting the impact response agree well with those obtained from fitting the rheological response. Next, we demonstrate our validated method on hydrated, biological soft tissues obtained from porcine brain, murine liver, and murine heart, and report the equilibrium shear moduli, instantaneous shear moduli, and relaxation time constants for each tissue. Together, our findings provide a new and straightforward approach capable of probing local mechanical properties of highly compliant viscoelastic materials with millimeter scale spatial resolution, mitigating complications involving contact detection or sample geometric constraints. Characterization and optimization of mechanical properties can be essential for the proper function of biomaterials in diverse applications. However, precise and accurate measurement of viscoelastic mechanical properties becomes increasingly difficult with increased compliance (particularly for elastic moduli &lt;1 kPa), largely due to challenges detecting initial contact with the compliant sample surface and measuring response at short timescale or high frequency. By contrast, impact indentation has highly accurate contact detection and can be used to measure short timescale (glassy) response. Here, we demonstrate an experimental and analytical method that confers significant advantages over existing approaches to extract spatially resolved viscoelastic moduli and characteristic time constants of biological tissues (e.g., brain and heart) and engineered biomaterials.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>29477455</pmid><doi>10.1016/j.actbio.2018.02.017</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2018-04, Vol.71, p.388-397
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_2008367027
source Elsevier
subjects Animals
Biomaterials
Biomechanics
Biomedical materials
Brain
Brain Chemistry
Complications
Constitutive models
Dimethylpolysiloxanes - chemistry
Elastic Modulus
Elastomers
Elastomers - chemistry
Gels
Geometric constraints
Impact response
Indentation
Liver
Liver - chemistry
Mechanical characterization
Mechanical properties
Mice
Models, Chemical
Modulus of elasticity
Myocardium - chemistry
Nylons - chemistry
Optimization
Polydimethylsiloxane
Polymer mechanics
Polymers
Relaxation time
Rheological properties
Rheology
Shear modulus
Shear stress
Silicone resins
Soft tissues
Spatial discrimination
Spatial resolution
Stiffness
Stress relaxation
Swine
Time
Tissues
Viscoelastic materials
Viscoelasticity
title Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20viscoelastic%20mechanical%20properties%20of%20highly%20compliant%20polymers%20and%20biological%20tissues%20using%20impact%20indentation&rft.jtitle=Acta%20biomaterialia&rft.au=Mijailovic,%20Aleksandar%20S.&rft.date=2018-04-15&rft.volume=71&rft.spage=388&rft.epage=397&rft.pages=388-397&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2018.02.017&rft_dat=%3Cproquest_cross%3E2008367027%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-fa362be24af59e8bd9727b79e0f15a651e00fb17bd89c569d0a1f65b8bf3f5c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086827610&rft_id=info:pmid/29477455&rfr_iscdi=true