Loading…
Caldendrin Directly Couples Postsynaptic Calcium Signals to Actin Remodeling in Dendritic Spines
Compartmentalization of calcium-dependent plasticity allows for rapid actin remodeling in dendritic spines. However, molecular mechanisms for the spatio-temporal regulation of filamentous actin (F-actin) dynamics by spinous Ca2+-transients are still poorly defined. We show that the postsynaptic Ca2+...
Saved in:
Published in: | Neuron (Cambridge, Mass.) Mass.), 2018-03, Vol.97 (5), p.1110-1125.e14 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c436t-2c85102d092343787b91354ca32b4af2df7843004157f9e4700ea7ee001fe3893 |
---|---|
cites | cdi_FETCH-LOGICAL-c436t-2c85102d092343787b91354ca32b4af2df7843004157f9e4700ea7ee001fe3893 |
container_end_page | 1125.e14 |
container_issue | 5 |
container_start_page | 1110 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 97 |
creator | Mikhaylova, Marina Bär, Julia van Bommel, Bas Schätzle, Philipp YuanXiang, PingAn Raman, Rajeev Hradsky, Johannes Konietzny, Anja Loktionov, Egor Y. Reddy, Pasham Parameshwar Lopez-Rojas, Jeffrey Spilker, Christina Kobler, Oliver Raza, Syed Ahsan Stork, Oliver Hoogenraad, Casper C. Kreutz, Michael R. |
description | Compartmentalization of calcium-dependent plasticity allows for rapid actin remodeling in dendritic spines. However, molecular mechanisms for the spatio-temporal regulation of filamentous actin (F-actin) dynamics by spinous Ca2+-transients are still poorly defined. We show that the postsynaptic Ca2+ sensor caldendrin orchestrates nano-domain actin dynamics that are essential for actin remodeling in the early phase of long-term potentiation (LTP). Steep elevation in spinous [Ca2+]i disrupts an intramolecular interaction of caldendrin and allows cortactin binding. The fast on and slow off rate of this interaction keeps cortactin in an active conformation, and protects F-actin at the spine base against cofilin-induced severing. Caldendrin gene knockout results in higher synaptic actin turnover, altered nanoscale organization of spinous F-actin, defects in structural spine plasticity, LTP, and hippocampus-dependent learning. Collectively, the data indicate that caldendrin-cortactin directly couple [Ca2+]i to preserve a minimal F-actin pool that is required for actin remodeling in the early phase of LTP.
•Calcium binding relieves intra-molecular inhibition of caldendrin•Caldendrin binding activates cortactin and promotes F-actin stabilization in spines•Caldendrin depletion results in loss of stable F-actin and spine plasticity deficits•Caldendrin directly couples [Ca2+]i to the stabilization of F-actin in synapses
Activity-dependent remodeling of the actin cytoskeleton is essential for synaptic plasticity. Mikhaylova et al. describe a novel molecular mechanism directly translating the initial calcium influx into coordinated rearrangement of spinous actin filaments at the nanoscale in dendritic spines. |
doi_str_mv | 10.1016/j.neuron.2018.01.046 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2008370131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627318300710</els_id><sourcerecordid>2008370131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-2c85102d092343787b91354ca32b4af2df7843004157f9e4700ea7ee001fe3893</originalsourceid><addsrcrecordid>eNp9kU1v1DAURS0EokPhHyAUiQ2bhPdsTxxvkKrhq1KlVhTWJuO8VB4ldrCTSvPvcTqFBQtW3px7rHcvY68RKgSs3x8qT0sMvuKATQVYgayfsA2CVqVErZ-yDTS6LmuuxBl7kdIBAOVW43N2xrVUjcZ6w37u2qEj30Xni48ukp2HY7ELyzRQKm5CmtPRt9PsbJFB65axuHV3vh1SMYfiws459o3G0NHg_F2xSh5ka-B2cp7SS_aszzi9enzP2Y_Pn77vvpZX118udxdXpZWinktumy0C70BzIYVq1F6j2ErbCr6Xbc-7XjVSAEjcql6TVADUKqJ8U0-i0eKcvTt5pxh-LZRmM7pkaRhaT2FJhgM0QgEKzOjbf9BDWOJ6VKaQi7oGuQrlibIxpBSpN1N0YxuPBsGsC5iDOS2wphoDaPICOfbmUb7sR-r-hv5UnoEPJ4ByG_eOoknWkbfUPdRvuuD-_8Nv90qX9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012366049</pqid></control><display><type>article</type><title>Caldendrin Directly Couples Postsynaptic Calcium Signals to Actin Remodeling in Dendritic Spines</title><source>Bacon Elsevier Global Sciencedirect Openaccess $ELSEVIER_GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Mikhaylova, Marina ; Bär, Julia ; van Bommel, Bas ; Schätzle, Philipp ; YuanXiang, PingAn ; Raman, Rajeev ; Hradsky, Johannes ; Konietzny, Anja ; Loktionov, Egor Y. ; Reddy, Pasham Parameshwar ; Lopez-Rojas, Jeffrey ; Spilker, Christina ; Kobler, Oliver ; Raza, Syed Ahsan ; Stork, Oliver ; Hoogenraad, Casper C. ; Kreutz, Michael R.</creator><creatorcontrib>Mikhaylova, Marina ; Bär, Julia ; van Bommel, Bas ; Schätzle, Philipp ; YuanXiang, PingAn ; Raman, Rajeev ; Hradsky, Johannes ; Konietzny, Anja ; Loktionov, Egor Y. ; Reddy, Pasham Parameshwar ; Lopez-Rojas, Jeffrey ; Spilker, Christina ; Kobler, Oliver ; Raza, Syed Ahsan ; Stork, Oliver ; Hoogenraad, Casper C. ; Kreutz, Michael R.</creatorcontrib><description>Compartmentalization of calcium-dependent plasticity allows for rapid actin remodeling in dendritic spines. However, molecular mechanisms for the spatio-temporal regulation of filamentous actin (F-actin) dynamics by spinous Ca2+-transients are still poorly defined. We show that the postsynaptic Ca2+ sensor caldendrin orchestrates nano-domain actin dynamics that are essential for actin remodeling in the early phase of long-term potentiation (LTP). Steep elevation in spinous [Ca2+]i disrupts an intramolecular interaction of caldendrin and allows cortactin binding. The fast on and slow off rate of this interaction keeps cortactin in an active conformation, and protects F-actin at the spine base against cofilin-induced severing. Caldendrin gene knockout results in higher synaptic actin turnover, altered nanoscale organization of spinous F-actin, defects in structural spine plasticity, LTP, and hippocampus-dependent learning. Collectively, the data indicate that caldendrin-cortactin directly couple [Ca2+]i to preserve a minimal F-actin pool that is required for actin remodeling in the early phase of LTP.
•Calcium binding relieves intra-molecular inhibition of caldendrin•Caldendrin binding activates cortactin and promotes F-actin stabilization in spines•Caldendrin depletion results in loss of stable F-actin and spine plasticity deficits•Caldendrin directly couples [Ca2+]i to the stabilization of F-actin in synapses
Activity-dependent remodeling of the actin cytoskeleton is essential for synaptic plasticity. Mikhaylova et al. describe a novel molecular mechanism directly translating the initial calcium influx into coordinated rearrangement of spinous actin filaments at the nanoscale in dendritic spines.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2018.01.046</identifier><identifier>PMID: 29478916</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Actin ; Calcium ; Calcium sequestration ; Calcium signalling ; caldendrin ; Cofilin ; Conformation ; cortactin ; Dendritic cells ; Dendritic plasticity ; Dendritic spines ; F-actin ; Long-term potentiation ; Molecular modelling ; Polymerization ; Proteins ; STED ; synaptic plasticity</subject><ispartof>Neuron (Cambridge, Mass.), 2018-03, Vol.97 (5), p.1110-1125.e14</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><rights>2018. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-2c85102d092343787b91354ca32b4af2df7843004157f9e4700ea7ee001fe3893</citedby><cites>FETCH-LOGICAL-c436t-2c85102d092343787b91354ca32b4af2df7843004157f9e4700ea7ee001fe3893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29478916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mikhaylova, Marina</creatorcontrib><creatorcontrib>Bär, Julia</creatorcontrib><creatorcontrib>van Bommel, Bas</creatorcontrib><creatorcontrib>Schätzle, Philipp</creatorcontrib><creatorcontrib>YuanXiang, PingAn</creatorcontrib><creatorcontrib>Raman, Rajeev</creatorcontrib><creatorcontrib>Hradsky, Johannes</creatorcontrib><creatorcontrib>Konietzny, Anja</creatorcontrib><creatorcontrib>Loktionov, Egor Y.</creatorcontrib><creatorcontrib>Reddy, Pasham Parameshwar</creatorcontrib><creatorcontrib>Lopez-Rojas, Jeffrey</creatorcontrib><creatorcontrib>Spilker, Christina</creatorcontrib><creatorcontrib>Kobler, Oliver</creatorcontrib><creatorcontrib>Raza, Syed Ahsan</creatorcontrib><creatorcontrib>Stork, Oliver</creatorcontrib><creatorcontrib>Hoogenraad, Casper C.</creatorcontrib><creatorcontrib>Kreutz, Michael R.</creatorcontrib><title>Caldendrin Directly Couples Postsynaptic Calcium Signals to Actin Remodeling in Dendritic Spines</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Compartmentalization of calcium-dependent plasticity allows for rapid actin remodeling in dendritic spines. However, molecular mechanisms for the spatio-temporal regulation of filamentous actin (F-actin) dynamics by spinous Ca2+-transients are still poorly defined. We show that the postsynaptic Ca2+ sensor caldendrin orchestrates nano-domain actin dynamics that are essential for actin remodeling in the early phase of long-term potentiation (LTP). Steep elevation in spinous [Ca2+]i disrupts an intramolecular interaction of caldendrin and allows cortactin binding. The fast on and slow off rate of this interaction keeps cortactin in an active conformation, and protects F-actin at the spine base against cofilin-induced severing. Caldendrin gene knockout results in higher synaptic actin turnover, altered nanoscale organization of spinous F-actin, defects in structural spine plasticity, LTP, and hippocampus-dependent learning. Collectively, the data indicate that caldendrin-cortactin directly couple [Ca2+]i to preserve a minimal F-actin pool that is required for actin remodeling in the early phase of LTP.
•Calcium binding relieves intra-molecular inhibition of caldendrin•Caldendrin binding activates cortactin and promotes F-actin stabilization in spines•Caldendrin depletion results in loss of stable F-actin and spine plasticity deficits•Caldendrin directly couples [Ca2+]i to the stabilization of F-actin in synapses
Activity-dependent remodeling of the actin cytoskeleton is essential for synaptic plasticity. Mikhaylova et al. describe a novel molecular mechanism directly translating the initial calcium influx into coordinated rearrangement of spinous actin filaments at the nanoscale in dendritic spines.</description><subject>Actin</subject><subject>Calcium</subject><subject>Calcium sequestration</subject><subject>Calcium signalling</subject><subject>caldendrin</subject><subject>Cofilin</subject><subject>Conformation</subject><subject>cortactin</subject><subject>Dendritic cells</subject><subject>Dendritic plasticity</subject><subject>Dendritic spines</subject><subject>F-actin</subject><subject>Long-term potentiation</subject><subject>Molecular modelling</subject><subject>Polymerization</subject><subject>Proteins</subject><subject>STED</subject><subject>synaptic plasticity</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAURS0EokPhHyAUiQ2bhPdsTxxvkKrhq1KlVhTWJuO8VB4ldrCTSvPvcTqFBQtW3px7rHcvY68RKgSs3x8qT0sMvuKATQVYgayfsA2CVqVErZ-yDTS6LmuuxBl7kdIBAOVW43N2xrVUjcZ6w37u2qEj30Xni48ukp2HY7ELyzRQKm5CmtPRt9PsbJFB65axuHV3vh1SMYfiws459o3G0NHg_F2xSh5ka-B2cp7SS_aszzi9enzP2Y_Pn77vvpZX118udxdXpZWinktumy0C70BzIYVq1F6j2ErbCr6Xbc-7XjVSAEjcql6TVADUKqJ8U0-i0eKcvTt5pxh-LZRmM7pkaRhaT2FJhgM0QgEKzOjbf9BDWOJ6VKaQi7oGuQrlibIxpBSpN1N0YxuPBsGsC5iDOS2wphoDaPICOfbmUb7sR-r-hv5UnoEPJ4ByG_eOoknWkbfUPdRvuuD-_8Nv90qX9w</recordid><startdate>20180307</startdate><enddate>20180307</enddate><creator>Mikhaylova, Marina</creator><creator>Bär, Julia</creator><creator>van Bommel, Bas</creator><creator>Schätzle, Philipp</creator><creator>YuanXiang, PingAn</creator><creator>Raman, Rajeev</creator><creator>Hradsky, Johannes</creator><creator>Konietzny, Anja</creator><creator>Loktionov, Egor Y.</creator><creator>Reddy, Pasham Parameshwar</creator><creator>Lopez-Rojas, Jeffrey</creator><creator>Spilker, Christina</creator><creator>Kobler, Oliver</creator><creator>Raza, Syed Ahsan</creator><creator>Stork, Oliver</creator><creator>Hoogenraad, Casper C.</creator><creator>Kreutz, Michael R.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20180307</creationdate><title>Caldendrin Directly Couples Postsynaptic Calcium Signals to Actin Remodeling in Dendritic Spines</title><author>Mikhaylova, Marina ; Bär, Julia ; van Bommel, Bas ; Schätzle, Philipp ; YuanXiang, PingAn ; Raman, Rajeev ; Hradsky, Johannes ; Konietzny, Anja ; Loktionov, Egor Y. ; Reddy, Pasham Parameshwar ; Lopez-Rojas, Jeffrey ; Spilker, Christina ; Kobler, Oliver ; Raza, Syed Ahsan ; Stork, Oliver ; Hoogenraad, Casper C. ; Kreutz, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-2c85102d092343787b91354ca32b4af2df7843004157f9e4700ea7ee001fe3893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actin</topic><topic>Calcium</topic><topic>Calcium sequestration</topic><topic>Calcium signalling</topic><topic>caldendrin</topic><topic>Cofilin</topic><topic>Conformation</topic><topic>cortactin</topic><topic>Dendritic cells</topic><topic>Dendritic plasticity</topic><topic>Dendritic spines</topic><topic>F-actin</topic><topic>Long-term potentiation</topic><topic>Molecular modelling</topic><topic>Polymerization</topic><topic>Proteins</topic><topic>STED</topic><topic>synaptic plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikhaylova, Marina</creatorcontrib><creatorcontrib>Bär, Julia</creatorcontrib><creatorcontrib>van Bommel, Bas</creatorcontrib><creatorcontrib>Schätzle, Philipp</creatorcontrib><creatorcontrib>YuanXiang, PingAn</creatorcontrib><creatorcontrib>Raman, Rajeev</creatorcontrib><creatorcontrib>Hradsky, Johannes</creatorcontrib><creatorcontrib>Konietzny, Anja</creatorcontrib><creatorcontrib>Loktionov, Egor Y.</creatorcontrib><creatorcontrib>Reddy, Pasham Parameshwar</creatorcontrib><creatorcontrib>Lopez-Rojas, Jeffrey</creatorcontrib><creatorcontrib>Spilker, Christina</creatorcontrib><creatorcontrib>Kobler, Oliver</creatorcontrib><creatorcontrib>Raza, Syed Ahsan</creatorcontrib><creatorcontrib>Stork, Oliver</creatorcontrib><creatorcontrib>Hoogenraad, Casper C.</creatorcontrib><creatorcontrib>Kreutz, Michael R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikhaylova, Marina</au><au>Bär, Julia</au><au>van Bommel, Bas</au><au>Schätzle, Philipp</au><au>YuanXiang, PingAn</au><au>Raman, Rajeev</au><au>Hradsky, Johannes</au><au>Konietzny, Anja</au><au>Loktionov, Egor Y.</au><au>Reddy, Pasham Parameshwar</au><au>Lopez-Rojas, Jeffrey</au><au>Spilker, Christina</au><au>Kobler, Oliver</au><au>Raza, Syed Ahsan</au><au>Stork, Oliver</au><au>Hoogenraad, Casper C.</au><au>Kreutz, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Caldendrin Directly Couples Postsynaptic Calcium Signals to Actin Remodeling in Dendritic Spines</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2018-03-07</date><risdate>2018</risdate><volume>97</volume><issue>5</issue><spage>1110</spage><epage>1125.e14</epage><pages>1110-1125.e14</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Compartmentalization of calcium-dependent plasticity allows for rapid actin remodeling in dendritic spines. However, molecular mechanisms for the spatio-temporal regulation of filamentous actin (F-actin) dynamics by spinous Ca2+-transients are still poorly defined. We show that the postsynaptic Ca2+ sensor caldendrin orchestrates nano-domain actin dynamics that are essential for actin remodeling in the early phase of long-term potentiation (LTP). Steep elevation in spinous [Ca2+]i disrupts an intramolecular interaction of caldendrin and allows cortactin binding. The fast on and slow off rate of this interaction keeps cortactin in an active conformation, and protects F-actin at the spine base against cofilin-induced severing. Caldendrin gene knockout results in higher synaptic actin turnover, altered nanoscale organization of spinous F-actin, defects in structural spine plasticity, LTP, and hippocampus-dependent learning. Collectively, the data indicate that caldendrin-cortactin directly couple [Ca2+]i to preserve a minimal F-actin pool that is required for actin remodeling in the early phase of LTP.
•Calcium binding relieves intra-molecular inhibition of caldendrin•Caldendrin binding activates cortactin and promotes F-actin stabilization in spines•Caldendrin depletion results in loss of stable F-actin and spine plasticity deficits•Caldendrin directly couples [Ca2+]i to the stabilization of F-actin in synapses
Activity-dependent remodeling of the actin cytoskeleton is essential for synaptic plasticity. Mikhaylova et al. describe a novel molecular mechanism directly translating the initial calcium influx into coordinated rearrangement of spinous actin filaments at the nanoscale in dendritic spines.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29478916</pmid><doi>10.1016/j.neuron.2018.01.046</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2018-03, Vol.97 (5), p.1110-1125.e14 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_2008370131 |
source | Bacon Elsevier Global Sciencedirect Openaccess $ELSEVIER_GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | Actin Calcium Calcium sequestration Calcium signalling caldendrin Cofilin Conformation cortactin Dendritic cells Dendritic plasticity Dendritic spines F-actin Long-term potentiation Molecular modelling Polymerization Proteins STED synaptic plasticity |
title | Caldendrin Directly Couples Postsynaptic Calcium Signals to Actin Remodeling in Dendritic Spines |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Caldendrin%20Directly%20Couples%20Postsynaptic%20Calcium%20Signals%20to%20Actin%20Remodeling%20in%20Dendritic%20Spines&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Mikhaylova,%20Marina&rft.date=2018-03-07&rft.volume=97&rft.issue=5&rft.spage=1110&rft.epage=1125.e14&rft.pages=1110-1125.e14&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2018.01.046&rft_dat=%3Cproquest_cross%3E2008370131%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-2c85102d092343787b91354ca32b4af2df7843004157f9e4700ea7ee001fe3893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2012366049&rft_id=info:pmid/29478916&rfr_iscdi=true |