Loading…
Genetic Code Expansion of the Silkworm Bombyx mori to Functionalize Silk Fiber
The genetic code in bacteria and animal cells has been expanded to incorporate novel amino acids into proteins. Recent efforts have enabled genetic code expansion in nematodes, flies, and mice, whereas such engineering is rare with industrially useful animals. In the present study, we engineered the...
Saved in:
Published in: | ACS synthetic biology 2018-03, Vol.7 (3), p.801-806 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The genetic code in bacteria and animal cells has been expanded to incorporate novel amino acids into proteins. Recent efforts have enabled genetic code expansion in nematodes, flies, and mice, whereas such engineering is rare with industrially useful animals. In the present study, we engineered the silkworm Bombyx mori to synthesize silk fiber functionalized with azidophenylalanine. For this purpose, we developed a bacterial system to screen for B. mori phenylalanyl-tRNA synthetases with altered amino-acid specificity. We created four transgenic B. mori lines expressing the selected synthetase variants in silk glands, and found that two of them supported the efficient in vivo incorporation of azidophenylalanine into silk fiber. The obtained silk was bio-orthogonally reactive with fluorescent molecules. The results showed that genetic code expansion in an industrial animal can be facilitated by prior bacterial selection, to accelerate the development of silk fiber with novel properties. |
---|---|
ISSN: | 2161-5063 2161-5063 |
DOI: | 10.1021/acssynbio.7b00437 |