Loading…

Molecular-Simulation-Driven Fragment Screening for the Discovery of New CXCL12 Inhibitors

Fragment-based drug discovery (FBDD) has become a mainstream approach in drug design because it allows the reduction of the chemical space and screening libraries while identifying fragments with high protein–ligand efficiency interactions that can later be grown into drug-like leads. In this work,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical information and modeling 2018-03, Vol.58 (3), p.683-691
Main Authors: Martinez-Rosell, Gerard, Harvey, Matt J, De Fabritiis, Gianni
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a364t-d0aa410b64d30b6224e990bfed5bc0a9f92070612fe08780984c97c88c3aee9b3
cites cdi_FETCH-LOGICAL-a364t-d0aa410b64d30b6224e990bfed5bc0a9f92070612fe08780984c97c88c3aee9b3
container_end_page 691
container_issue 3
container_start_page 683
container_title Journal of chemical information and modeling
container_volume 58
creator Martinez-Rosell, Gerard
Harvey, Matt J
De Fabritiis, Gianni
description Fragment-based drug discovery (FBDD) has become a mainstream approach in drug design because it allows the reduction of the chemical space and screening libraries while identifying fragments with high protein–ligand efficiency interactions that can later be grown into drug-like leads. In this work, we leverage high-throughput molecular dynamics (MD) simulations to screen a library of 129 fragments for a total of 5.85 ms against the CXCL12 monomer, a chemokine involved in inflammation and diseases such as cancer. Our in silico binding assay was able to recover binding poses, affinities, and kinetics for the selected library and was able to predict 8 mM-affinity fragments with ligand efficiencies higher than 0.3. All of the fragment hits present a similar chemical structure, with a hydrophobic core and a positively charged group, and bind to either sY7 or H1S68 pockets, where they share pharmacophoric properties with experimentally resolved natural binders. This work presents a large-scale screening assay using an exclusive combination of thousands of short MD adaptive simulations analyzed with a Markov state model (MSM) framework.
doi_str_mv 10.1021/acs.jcim.7b00625
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2008884239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2072770585</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-d0aa410b64d30b6224e990bfed5bc0a9f92070612fe08780984c97c88c3aee9b3</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EgvLYmZAlFgZSrp2XPaKWl1RgACSYIse9AVdJXOykiH-PoS0DEouvh_N99-oQcshgyICzM6X9cKZNM8xLgIynG2TA0kRGMoPnzfU_ldkO2fV-BhDHMuPbZIfLRDDI0wF5ubU16r5WLnowTZidsW00dmaBLb106rXBtqMP2iG2pn2llXW0e0M6Nl7bBbpPait6hx909DyaME5v2jdTms46v0-2KlV7PFjNPfJ0efE4uo4m91c3o_NJpOIs6aIpKJUwKLNkGoeX8wSlhLLCaVpqULKSHHLIGK8QRC5AikTLXAuhY4Uoy3iPnCx7586-9-i7ogm3YV2rFm3vCw4ghEh4LAN6_Aed2d614bpA5TzPIRVpoGBJaWe9d1gVc2ca5T4LBsW39iJoL761FyvtIXK0Ku7LBqe_gbXnAJwugZ_oeum_fV95Go09</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072770585</pqid></control><display><type>article</type><title>Molecular-Simulation-Driven Fragment Screening for the Discovery of New CXCL12 Inhibitors</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Martinez-Rosell, Gerard ; Harvey, Matt J ; De Fabritiis, Gianni</creator><creatorcontrib>Martinez-Rosell, Gerard ; Harvey, Matt J ; De Fabritiis, Gianni</creatorcontrib><description>Fragment-based drug discovery (FBDD) has become a mainstream approach in drug design because it allows the reduction of the chemical space and screening libraries while identifying fragments with high protein–ligand efficiency interactions that can later be grown into drug-like leads. In this work, we leverage high-throughput molecular dynamics (MD) simulations to screen a library of 129 fragments for a total of 5.85 ms against the CXCL12 monomer, a chemokine involved in inflammation and diseases such as cancer. Our in silico binding assay was able to recover binding poses, affinities, and kinetics for the selected library and was able to predict 8 mM-affinity fragments with ligand efficiencies higher than 0.3. All of the fragment hits present a similar chemical structure, with a hydrophobic core and a positively charged group, and bind to either sY7 or H1S68 pockets, where they share pharmacophoric properties with experimentally resolved natural binders. This work presents a large-scale screening assay using an exclusive combination of thousands of short MD adaptive simulations analyzed with a Markov state model (MSM) framework.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.7b00625</identifier><identifier>PMID: 29481075</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Affinity ; Binding ; Binding Sites ; Chemokine CXCL12 - antagonists &amp; inhibitors ; Chemokine CXCL12 - chemistry ; Chemokine CXCL12 - metabolism ; Computer simulation ; Drug Design ; Drug Discovery - methods ; Fragmentation ; Fragments ; High-Throughput Screening Assays - methods ; Humans ; Hydrophobic and Hydrophilic Interactions ; Kinetics ; Leverage ; Ligands ; Markov chains ; Molecular chains ; Molecular Docking Simulation - methods ; Molecular dynamics ; Molecular Dynamics Simulation ; Organic chemistry ; Pharmacology ; Proteins ; R&amp;D ; Research &amp; development ; Screening ; Small Molecule Libraries - chemistry ; Small Molecule Libraries - pharmacology ; Studies</subject><ispartof>Journal of chemical information and modeling, 2018-03, Vol.58 (3), p.683-691</ispartof><rights>Copyright American Chemical Society Mar 26, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-d0aa410b64d30b6224e990bfed5bc0a9f92070612fe08780984c97c88c3aee9b3</citedby><cites>FETCH-LOGICAL-a364t-d0aa410b64d30b6224e990bfed5bc0a9f92070612fe08780984c97c88c3aee9b3</cites><orcidid>0000-0001-6277-6769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29481075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martinez-Rosell, Gerard</creatorcontrib><creatorcontrib>Harvey, Matt J</creatorcontrib><creatorcontrib>De Fabritiis, Gianni</creatorcontrib><title>Molecular-Simulation-Driven Fragment Screening for the Discovery of New CXCL12 Inhibitors</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Fragment-based drug discovery (FBDD) has become a mainstream approach in drug design because it allows the reduction of the chemical space and screening libraries while identifying fragments with high protein–ligand efficiency interactions that can later be grown into drug-like leads. In this work, we leverage high-throughput molecular dynamics (MD) simulations to screen a library of 129 fragments for a total of 5.85 ms against the CXCL12 monomer, a chemokine involved in inflammation and diseases such as cancer. Our in silico binding assay was able to recover binding poses, affinities, and kinetics for the selected library and was able to predict 8 mM-affinity fragments with ligand efficiencies higher than 0.3. All of the fragment hits present a similar chemical structure, with a hydrophobic core and a positively charged group, and bind to either sY7 or H1S68 pockets, where they share pharmacophoric properties with experimentally resolved natural binders. This work presents a large-scale screening assay using an exclusive combination of thousands of short MD adaptive simulations analyzed with a Markov state model (MSM) framework.</description><subject>Affinity</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Chemokine CXCL12 - antagonists &amp; inhibitors</subject><subject>Chemokine CXCL12 - chemistry</subject><subject>Chemokine CXCL12 - metabolism</subject><subject>Computer simulation</subject><subject>Drug Design</subject><subject>Drug Discovery - methods</subject><subject>Fragmentation</subject><subject>Fragments</subject><subject>High-Throughput Screening Assays - methods</subject><subject>Humans</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Kinetics</subject><subject>Leverage</subject><subject>Ligands</subject><subject>Markov chains</subject><subject>Molecular chains</subject><subject>Molecular Docking Simulation - methods</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Organic chemistry</subject><subject>Pharmacology</subject><subject>Proteins</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Screening</subject><subject>Small Molecule Libraries - chemistry</subject><subject>Small Molecule Libraries - pharmacology</subject><subject>Studies</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAURi0EgvLYmZAlFgZSrp2XPaKWl1RgACSYIse9AVdJXOykiH-PoS0DEouvh_N99-oQcshgyICzM6X9cKZNM8xLgIynG2TA0kRGMoPnzfU_ldkO2fV-BhDHMuPbZIfLRDDI0wF5ubU16r5WLnowTZidsW00dmaBLb106rXBtqMP2iG2pn2llXW0e0M6Nl7bBbpPait6hx909DyaME5v2jdTms46v0-2KlV7PFjNPfJ0efE4uo4m91c3o_NJpOIs6aIpKJUwKLNkGoeX8wSlhLLCaVpqULKSHHLIGK8QRC5AikTLXAuhY4Uoy3iPnCx7586-9-i7ogm3YV2rFm3vCw4ghEh4LAN6_Aed2d614bpA5TzPIRVpoGBJaWe9d1gVc2ca5T4LBsW39iJoL761FyvtIXK0Ku7LBqe_gbXnAJwugZ_oeum_fV95Go09</recordid><startdate>20180326</startdate><enddate>20180326</enddate><creator>Martinez-Rosell, Gerard</creator><creator>Harvey, Matt J</creator><creator>De Fabritiis, Gianni</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6277-6769</orcidid></search><sort><creationdate>20180326</creationdate><title>Molecular-Simulation-Driven Fragment Screening for the Discovery of New CXCL12 Inhibitors</title><author>Martinez-Rosell, Gerard ; Harvey, Matt J ; De Fabritiis, Gianni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-d0aa410b64d30b6224e990bfed5bc0a9f92070612fe08780984c97c88c3aee9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Affinity</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Chemokine CXCL12 - antagonists &amp; inhibitors</topic><topic>Chemokine CXCL12 - chemistry</topic><topic>Chemokine CXCL12 - metabolism</topic><topic>Computer simulation</topic><topic>Drug Design</topic><topic>Drug Discovery - methods</topic><topic>Fragmentation</topic><topic>Fragments</topic><topic>High-Throughput Screening Assays - methods</topic><topic>Humans</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Kinetics</topic><topic>Leverage</topic><topic>Ligands</topic><topic>Markov chains</topic><topic>Molecular chains</topic><topic>Molecular Docking Simulation - methods</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Organic chemistry</topic><topic>Pharmacology</topic><topic>Proteins</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Screening</topic><topic>Small Molecule Libraries - chemistry</topic><topic>Small Molecule Libraries - pharmacology</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinez-Rosell, Gerard</creatorcontrib><creatorcontrib>Harvey, Matt J</creatorcontrib><creatorcontrib>De Fabritiis, Gianni</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinez-Rosell, Gerard</au><au>Harvey, Matt J</au><au>De Fabritiis, Gianni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular-Simulation-Driven Fragment Screening for the Discovery of New CXCL12 Inhibitors</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2018-03-26</date><risdate>2018</risdate><volume>58</volume><issue>3</issue><spage>683</spage><epage>691</epage><pages>683-691</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Fragment-based drug discovery (FBDD) has become a mainstream approach in drug design because it allows the reduction of the chemical space and screening libraries while identifying fragments with high protein–ligand efficiency interactions that can later be grown into drug-like leads. In this work, we leverage high-throughput molecular dynamics (MD) simulations to screen a library of 129 fragments for a total of 5.85 ms against the CXCL12 monomer, a chemokine involved in inflammation and diseases such as cancer. Our in silico binding assay was able to recover binding poses, affinities, and kinetics for the selected library and was able to predict 8 mM-affinity fragments with ligand efficiencies higher than 0.3. All of the fragment hits present a similar chemical structure, with a hydrophobic core and a positively charged group, and bind to either sY7 or H1S68 pockets, where they share pharmacophoric properties with experimentally resolved natural binders. This work presents a large-scale screening assay using an exclusive combination of thousands of short MD adaptive simulations analyzed with a Markov state model (MSM) framework.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29481075</pmid><doi>10.1021/acs.jcim.7b00625</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6277-6769</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2018-03, Vol.58 (3), p.683-691
issn 1549-9596
1549-960X
language eng
recordid cdi_proquest_miscellaneous_2008884239
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Affinity
Binding
Binding Sites
Chemokine CXCL12 - antagonists & inhibitors
Chemokine CXCL12 - chemistry
Chemokine CXCL12 - metabolism
Computer simulation
Drug Design
Drug Discovery - methods
Fragmentation
Fragments
High-Throughput Screening Assays - methods
Humans
Hydrophobic and Hydrophilic Interactions
Kinetics
Leverage
Ligands
Markov chains
Molecular chains
Molecular Docking Simulation - methods
Molecular dynamics
Molecular Dynamics Simulation
Organic chemistry
Pharmacology
Proteins
R&D
Research & development
Screening
Small Molecule Libraries - chemistry
Small Molecule Libraries - pharmacology
Studies
title Molecular-Simulation-Driven Fragment Screening for the Discovery of New CXCL12 Inhibitors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A14%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular-Simulation-Driven%20Fragment%20Screening%20for%20the%20Discovery%20of%20New%20CXCL12%20Inhibitors&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Martinez-Rosell,%20Gerard&rft.date=2018-03-26&rft.volume=58&rft.issue=3&rft.spage=683&rft.epage=691&rft.pages=683-691&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.7b00625&rft_dat=%3Cproquest_cross%3E2072770585%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a364t-d0aa410b64d30b6224e990bfed5bc0a9f92070612fe08780984c97c88c3aee9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2072770585&rft_id=info:pmid/29481075&rfr_iscdi=true