Loading…
Molecular-Simulation-Driven Fragment Screening for the Discovery of New CXCL12 Inhibitors
Fragment-based drug discovery (FBDD) has become a mainstream approach in drug design because it allows the reduction of the chemical space and screening libraries while identifying fragments with high protein–ligand efficiency interactions that can later be grown into drug-like leads. In this work,...
Saved in:
Published in: | Journal of chemical information and modeling 2018-03, Vol.58 (3), p.683-691 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a364t-d0aa410b64d30b6224e990bfed5bc0a9f92070612fe08780984c97c88c3aee9b3 |
---|---|
cites | cdi_FETCH-LOGICAL-a364t-d0aa410b64d30b6224e990bfed5bc0a9f92070612fe08780984c97c88c3aee9b3 |
container_end_page | 691 |
container_issue | 3 |
container_start_page | 683 |
container_title | Journal of chemical information and modeling |
container_volume | 58 |
creator | Martinez-Rosell, Gerard Harvey, Matt J De Fabritiis, Gianni |
description | Fragment-based drug discovery (FBDD) has become a mainstream approach in drug design because it allows the reduction of the chemical space and screening libraries while identifying fragments with high protein–ligand efficiency interactions that can later be grown into drug-like leads. In this work, we leverage high-throughput molecular dynamics (MD) simulations to screen a library of 129 fragments for a total of 5.85 ms against the CXCL12 monomer, a chemokine involved in inflammation and diseases such as cancer. Our in silico binding assay was able to recover binding poses, affinities, and kinetics for the selected library and was able to predict 8 mM-affinity fragments with ligand efficiencies higher than 0.3. All of the fragment hits present a similar chemical structure, with a hydrophobic core and a positively charged group, and bind to either sY7 or H1S68 pockets, where they share pharmacophoric properties with experimentally resolved natural binders. This work presents a large-scale screening assay using an exclusive combination of thousands of short MD adaptive simulations analyzed with a Markov state model (MSM) framework. |
doi_str_mv | 10.1021/acs.jcim.7b00625 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2008884239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2072770585</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-d0aa410b64d30b6224e990bfed5bc0a9f92070612fe08780984c97c88c3aee9b3</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EgvLYmZAlFgZSrp2XPaKWl1RgACSYIse9AVdJXOykiH-PoS0DEouvh_N99-oQcshgyICzM6X9cKZNM8xLgIynG2TA0kRGMoPnzfU_ldkO2fV-BhDHMuPbZIfLRDDI0wF5ubU16r5WLnowTZidsW00dmaBLb106rXBtqMP2iG2pn2llXW0e0M6Nl7bBbpPait6hx909DyaME5v2jdTms46v0-2KlV7PFjNPfJ0efE4uo4m91c3o_NJpOIs6aIpKJUwKLNkGoeX8wSlhLLCaVpqULKSHHLIGK8QRC5AikTLXAuhY4Uoy3iPnCx7586-9-i7ogm3YV2rFm3vCw4ghEh4LAN6_Aed2d614bpA5TzPIRVpoGBJaWe9d1gVc2ca5T4LBsW39iJoL761FyvtIXK0Ku7LBqe_gbXnAJwugZ_oeum_fV95Go09</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072770585</pqid></control><display><type>article</type><title>Molecular-Simulation-Driven Fragment Screening for the Discovery of New CXCL12 Inhibitors</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Martinez-Rosell, Gerard ; Harvey, Matt J ; De Fabritiis, Gianni</creator><creatorcontrib>Martinez-Rosell, Gerard ; Harvey, Matt J ; De Fabritiis, Gianni</creatorcontrib><description>Fragment-based drug discovery (FBDD) has become a mainstream approach in drug design because it allows the reduction of the chemical space and screening libraries while identifying fragments with high protein–ligand efficiency interactions that can later be grown into drug-like leads. In this work, we leverage high-throughput molecular dynamics (MD) simulations to screen a library of 129 fragments for a total of 5.85 ms against the CXCL12 monomer, a chemokine involved in inflammation and diseases such as cancer. Our in silico binding assay was able to recover binding poses, affinities, and kinetics for the selected library and was able to predict 8 mM-affinity fragments with ligand efficiencies higher than 0.3. All of the fragment hits present a similar chemical structure, with a hydrophobic core and a positively charged group, and bind to either sY7 or H1S68 pockets, where they share pharmacophoric properties with experimentally resolved natural binders. This work presents a large-scale screening assay using an exclusive combination of thousands of short MD adaptive simulations analyzed with a Markov state model (MSM) framework.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.7b00625</identifier><identifier>PMID: 29481075</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Affinity ; Binding ; Binding Sites ; Chemokine CXCL12 - antagonists & inhibitors ; Chemokine CXCL12 - chemistry ; Chemokine CXCL12 - metabolism ; Computer simulation ; Drug Design ; Drug Discovery - methods ; Fragmentation ; Fragments ; High-Throughput Screening Assays - methods ; Humans ; Hydrophobic and Hydrophilic Interactions ; Kinetics ; Leverage ; Ligands ; Markov chains ; Molecular chains ; Molecular Docking Simulation - methods ; Molecular dynamics ; Molecular Dynamics Simulation ; Organic chemistry ; Pharmacology ; Proteins ; R&D ; Research & development ; Screening ; Small Molecule Libraries - chemistry ; Small Molecule Libraries - pharmacology ; Studies</subject><ispartof>Journal of chemical information and modeling, 2018-03, Vol.58 (3), p.683-691</ispartof><rights>Copyright American Chemical Society Mar 26, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-d0aa410b64d30b6224e990bfed5bc0a9f92070612fe08780984c97c88c3aee9b3</citedby><cites>FETCH-LOGICAL-a364t-d0aa410b64d30b6224e990bfed5bc0a9f92070612fe08780984c97c88c3aee9b3</cites><orcidid>0000-0001-6277-6769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29481075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martinez-Rosell, Gerard</creatorcontrib><creatorcontrib>Harvey, Matt J</creatorcontrib><creatorcontrib>De Fabritiis, Gianni</creatorcontrib><title>Molecular-Simulation-Driven Fragment Screening for the Discovery of New CXCL12 Inhibitors</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Fragment-based drug discovery (FBDD) has become a mainstream approach in drug design because it allows the reduction of the chemical space and screening libraries while identifying fragments with high protein–ligand efficiency interactions that can later be grown into drug-like leads. In this work, we leverage high-throughput molecular dynamics (MD) simulations to screen a library of 129 fragments for a total of 5.85 ms against the CXCL12 monomer, a chemokine involved in inflammation and diseases such as cancer. Our in silico binding assay was able to recover binding poses, affinities, and kinetics for the selected library and was able to predict 8 mM-affinity fragments with ligand efficiencies higher than 0.3. All of the fragment hits present a similar chemical structure, with a hydrophobic core and a positively charged group, and bind to either sY7 or H1S68 pockets, where they share pharmacophoric properties with experimentally resolved natural binders. This work presents a large-scale screening assay using an exclusive combination of thousands of short MD adaptive simulations analyzed with a Markov state model (MSM) framework.</description><subject>Affinity</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Chemokine CXCL12 - antagonists & inhibitors</subject><subject>Chemokine CXCL12 - chemistry</subject><subject>Chemokine CXCL12 - metabolism</subject><subject>Computer simulation</subject><subject>Drug Design</subject><subject>Drug Discovery - methods</subject><subject>Fragmentation</subject><subject>Fragments</subject><subject>High-Throughput Screening Assays - methods</subject><subject>Humans</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Kinetics</subject><subject>Leverage</subject><subject>Ligands</subject><subject>Markov chains</subject><subject>Molecular chains</subject><subject>Molecular Docking Simulation - methods</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Organic chemistry</subject><subject>Pharmacology</subject><subject>Proteins</subject><subject>R&D</subject><subject>Research & development</subject><subject>Screening</subject><subject>Small Molecule Libraries - chemistry</subject><subject>Small Molecule Libraries - pharmacology</subject><subject>Studies</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAURi0EgvLYmZAlFgZSrp2XPaKWl1RgACSYIse9AVdJXOykiH-PoS0DEouvh_N99-oQcshgyICzM6X9cKZNM8xLgIynG2TA0kRGMoPnzfU_ldkO2fV-BhDHMuPbZIfLRDDI0wF5ubU16r5WLnowTZidsW00dmaBLb106rXBtqMP2iG2pn2llXW0e0M6Nl7bBbpPait6hx909DyaME5v2jdTms46v0-2KlV7PFjNPfJ0efE4uo4m91c3o_NJpOIs6aIpKJUwKLNkGoeX8wSlhLLCaVpqULKSHHLIGK8QRC5AikTLXAuhY4Uoy3iPnCx7586-9-i7ogm3YV2rFm3vCw4ghEh4LAN6_Aed2d614bpA5TzPIRVpoGBJaWe9d1gVc2ca5T4LBsW39iJoL761FyvtIXK0Ku7LBqe_gbXnAJwugZ_oeum_fV95Go09</recordid><startdate>20180326</startdate><enddate>20180326</enddate><creator>Martinez-Rosell, Gerard</creator><creator>Harvey, Matt J</creator><creator>De Fabritiis, Gianni</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6277-6769</orcidid></search><sort><creationdate>20180326</creationdate><title>Molecular-Simulation-Driven Fragment Screening for the Discovery of New CXCL12 Inhibitors</title><author>Martinez-Rosell, Gerard ; Harvey, Matt J ; De Fabritiis, Gianni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-d0aa410b64d30b6224e990bfed5bc0a9f92070612fe08780984c97c88c3aee9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Affinity</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Chemokine CXCL12 - antagonists & inhibitors</topic><topic>Chemokine CXCL12 - chemistry</topic><topic>Chemokine CXCL12 - metabolism</topic><topic>Computer simulation</topic><topic>Drug Design</topic><topic>Drug Discovery - methods</topic><topic>Fragmentation</topic><topic>Fragments</topic><topic>High-Throughput Screening Assays - methods</topic><topic>Humans</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Kinetics</topic><topic>Leverage</topic><topic>Ligands</topic><topic>Markov chains</topic><topic>Molecular chains</topic><topic>Molecular Docking Simulation - methods</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Organic chemistry</topic><topic>Pharmacology</topic><topic>Proteins</topic><topic>R&D</topic><topic>Research & development</topic><topic>Screening</topic><topic>Small Molecule Libraries - chemistry</topic><topic>Small Molecule Libraries - pharmacology</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinez-Rosell, Gerard</creatorcontrib><creatorcontrib>Harvey, Matt J</creatorcontrib><creatorcontrib>De Fabritiis, Gianni</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinez-Rosell, Gerard</au><au>Harvey, Matt J</au><au>De Fabritiis, Gianni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular-Simulation-Driven Fragment Screening for the Discovery of New CXCL12 Inhibitors</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2018-03-26</date><risdate>2018</risdate><volume>58</volume><issue>3</issue><spage>683</spage><epage>691</epage><pages>683-691</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Fragment-based drug discovery (FBDD) has become a mainstream approach in drug design because it allows the reduction of the chemical space and screening libraries while identifying fragments with high protein–ligand efficiency interactions that can later be grown into drug-like leads. In this work, we leverage high-throughput molecular dynamics (MD) simulations to screen a library of 129 fragments for a total of 5.85 ms against the CXCL12 monomer, a chemokine involved in inflammation and diseases such as cancer. Our in silico binding assay was able to recover binding poses, affinities, and kinetics for the selected library and was able to predict 8 mM-affinity fragments with ligand efficiencies higher than 0.3. All of the fragment hits present a similar chemical structure, with a hydrophobic core and a positively charged group, and bind to either sY7 or H1S68 pockets, where they share pharmacophoric properties with experimentally resolved natural binders. This work presents a large-scale screening assay using an exclusive combination of thousands of short MD adaptive simulations analyzed with a Markov state model (MSM) framework.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29481075</pmid><doi>10.1021/acs.jcim.7b00625</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6277-6769</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2018-03, Vol.58 (3), p.683-691 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_2008884239 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Affinity Binding Binding Sites Chemokine CXCL12 - antagonists & inhibitors Chemokine CXCL12 - chemistry Chemokine CXCL12 - metabolism Computer simulation Drug Design Drug Discovery - methods Fragmentation Fragments High-Throughput Screening Assays - methods Humans Hydrophobic and Hydrophilic Interactions Kinetics Leverage Ligands Markov chains Molecular chains Molecular Docking Simulation - methods Molecular dynamics Molecular Dynamics Simulation Organic chemistry Pharmacology Proteins R&D Research & development Screening Small Molecule Libraries - chemistry Small Molecule Libraries - pharmacology Studies |
title | Molecular-Simulation-Driven Fragment Screening for the Discovery of New CXCL12 Inhibitors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A14%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular-Simulation-Driven%20Fragment%20Screening%20for%20the%20Discovery%20of%20New%20CXCL12%20Inhibitors&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Martinez-Rosell,%20Gerard&rft.date=2018-03-26&rft.volume=58&rft.issue=3&rft.spage=683&rft.epage=691&rft.pages=683-691&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.7b00625&rft_dat=%3Cproquest_cross%3E2072770585%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a364t-d0aa410b64d30b6224e990bfed5bc0a9f92070612fe08780984c97c88c3aee9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2072770585&rft_id=info:pmid/29481075&rfr_iscdi=true |