Loading…

Runners With Patellofemoral Pain Exhibit Greater Peak Patella Cartilage Stress Compared With Pain-Free Runners

The primary purpose of this study is to determine whether recreational runners with patellofemoral pain (PFP) exhibit greater peak patella cartilage stress compared with pain-free runners. A secondary purpose was to determine the kinematic and/or kinetic predictors of peak patella cartilage stress d...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied biomechanics 2018-08, Vol.34 (4), p.298-305
Main Authors: Liao, Tzu-Chieh, Keyak, Joyce H, Powers, Christopher M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The primary purpose of this study is to determine whether recreational runners with patellofemoral pain (PFP) exhibit greater peak patella cartilage stress compared with pain-free runners. A secondary purpose was to determine the kinematic and/or kinetic predictors of peak patella cartilage stress during running. A total of 22 female recreational runners (12 with PFP and 10 pain-free controls) participated in this study. Patella cartilage stress profiles were quantified using subject-specific finite element models simulating the maximum knee flexion angle during the stance phase of running. Input parameters to the finite element model included subject-specific patellofemoral joint geometry, quadriceps muscle forces, and lower-extremity kinematics in the frontal and transverse planes. Tibiofemoral joint kinematics and kinetics were quantified to determine the best predictor of stress using stepwise regression analysis. Compared with the pain-free runners, those with PFP exhibited greater peak hydrostatic pressure (PFP vs control: 21.2 [5.6] MPa vs 16.5 [4.6] MPa) and maximum shear stress (PFP vs control: 11.3 [4.6] MPa vs 8.7 [2.3] MPa). Knee external rotation was the best predictor of peak hydrostatic pressure and peak maximum shear stress (38% and 25% of variances, respectively), followed by the knee extensor moment (21% and 25% of variances, respectively). Runners with PFP exhibit greater peak patella cartilage stress during running compared with pain-free individuals. The combination of knee external rotation and a high knee extensor moment best predicted the elevated peak stress during running.
ISSN:1065-8483
1543-2688
DOI:10.1123/jab.2017-0229