Loading…

Polydopamine Nanosphere/Gold Nanocluster (Au NC)-Based Nanoplatform for Dual Color Simultaneous Detection of Multiple Tumor-Related MicroRNAs with DNase-I-Assisted Target Recycling Amplification

A novel fluorescence resonance energy transfer (FRET)-based platform using polydopamine nanospheres (PDANSs) as energy acceptors and dual colored Au NCs as energy donors for simultaneous detection of multiple tumor-related microRNAs with DNase-I-assisted target recycling amplification was developed...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2018-03, Vol.90 (6), p.4039-4045
Main Authors: Xu, Shenghao, Nie, Yongyin, Jiang, Liping, Wang, Jun, Xu, Guiyun, Wang, Wei, Luo, Xiliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel fluorescence resonance energy transfer (FRET)-based platform using polydopamine nanospheres (PDANSs) as energy acceptors and dual colored Au NCs as energy donors for simultaneous detection of multiple tumor-related microRNAs with DNase-I-assisted target recycling amplification was developed for the first time. On the basis of monitoring the change of the recovered fluorescence intensity at 445 and 575 nm upon the addition of targets miRNA-21 and let-7a, these two microRNAs (miRNAs) can be simultaneously quantitatively detected, with detection limits of 4.2 and 3.6 pM (3σ) for miRNA-21 and let-7a, which was almost 20 times lower than that without DNase I. Additionally, semiquantitative determination of miRNA-21 and let-7a can also be realized through photovisualization. Most importantly, serums from normal and breast cancer patients can be visually and directly discriminated without any sample pretreatment by confocal microscope experiments, demonstrating promising potential for auxiliary clinical diagnosis.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.7b05253