Loading…

In vitro outlook of gold nanoparticles in photo-thermal therapy: a literature review

Hyperthermia is an anti-cancer treatment in which the temperature of the malignant tumor is increased more than other adjacent normal tissues. Microwave, ultrasound, laser, and radiofrequency sources have been used for hyperthermia of cancerous tissues. In the past decade, near-infrared (NIR) laser...

Full description

Saved in:
Bibliographic Details
Published in:Lasers in medical science 2018-05, Vol.33 (4), p.917-926
Main Authors: Norouzi, Hasan, Khoshgard, Karim, Akbarzadeh, Fatemeh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hyperthermia is an anti-cancer treatment in which the temperature of the malignant tumor is increased more than other adjacent normal tissues. Microwave, ultrasound, laser, and radiofrequency sources have been used for hyperthermia of cancerous tissues. In the past decade, near-infrared (NIR) laser for cancer therapy, known as photo-thermal therapy (PTT), was expanded in which the photo-sensitizer agent converts the light photon energy to heat. The heat following PTT can destroy cancer cells. There are some photo-sensitizer agents which have been used for PTT; however, owing to recent advances in nanotechnology, noble metal nanoparticles like gold (Au) nanoparticles (GNPs) have been used successfully in PTT. GNPs have some desirable specifications, including simple and controlled synthesis, small size, high level of biocompatibility, and surface plasmon resonance (SPR). The SPR effect of the GNPs increases the radiative properties like absorption and scattering; therefore, they can be used in PTT. In this article, we reviewed recent in vitro studies of PTT using GNPs in literature. At first, we focus on the physical properties of GNPs, their interaction with infrared radiation, and physical parameters governing the interaction of infrared radiation with the GNPs. Then, we review the passive and active targeting of GNPs using the different coating to induce the thermal damage in cancer cells using low-level laser PPT. The GNPs’ cellular internalization into cancer cells is a challenge which is consequently considered. In this review, we also summarize the results of synergistic cancer therapy studies on the combination of radiation therapy as a routine cancer treatment and PTT: in which significant improvement occurs in treatment efficacy.
ISSN:0268-8921
1435-604X
DOI:10.1007/s10103-018-2467-z