Loading…

Assessment of rhizosphere processes for removing water-borne macrolide antibiotics in constructed wetlands

Aims Limited information is available on plant rhizosphere processes for removing antibiotics in antibiotic-contaminated waters. This study identifies rhizosphere processes and evaluates their relative contributions for the macrolides (ML) removal in aquatic plant systems. Methods A flask-scale expe...

Full description

Saved in:
Bibliographic Details
Published in:Plant and soil 2017-10, Vol.419 (1/2), p.489-502
Main Authors: Tai, Yiping, Tam, Nora Fung-Yee, Dai, Yunv, Yang, Yang, Lin, Jianhua, Tao, Ran, Yang, Yufen, Wang, Jiaxi, Wang, Rui, Huang, Wenda, Xu, Xiaodan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-c4dc8a62dfe546b2ba770072e7b95e1d0da81738576121f22265a224b267080d3
cites cdi_FETCH-LOGICAL-c438t-c4dc8a62dfe546b2ba770072e7b95e1d0da81738576121f22265a224b267080d3
container_end_page 502
container_issue 1/2
container_start_page 489
container_title Plant and soil
container_volume 419
creator Tai, Yiping
Tam, Nora Fung-Yee
Dai, Yunv
Yang, Yang
Lin, Jianhua
Tao, Ran
Yang, Yufen
Wang, Jiaxi
Wang, Rui
Huang, Wenda
Xu, Xiaodan
description Aims Limited information is available on plant rhizosphere processes for removing antibiotics in antibiotic-contaminated waters. This study identifies rhizosphere processes and evaluates their relative contributions for the macrolides (ML) removal in aquatic plant systems. Methods A flask-scale experiment (100 and 300 μg/L ML) incorporating Juncus effuses and Canna indica was used to identify the root adsorption, rhizobacterial influences, and plant uptake responsible for the ML (i.e., anhydroerythromycin A, roxithromycin, clarithromycin and tilmicosin) removal. Results Total ML removal rates due to rhizosphere processes were respectively 43.7–67.6% and 44.3–82.2% at 100 and 300 μg/L ML. J. effuses removed ML more effectively than C. indica (P < 0.05). The relative contribution of rhizospheric pathways to remove all ML followed the order: root sorption > rhizobacterial influence > plant uptake (P < 0.01). Sorption and rhizobacterial activity were important removal pathways in wetland plant microcosms, accounting for 36.5–72.8% and 20.5–54.2% of the total rhizosphere associated removal of ML, respectively. Conclusions Root sorption and rhizobacterial influence were the main rhizospheric pathways of ML removal in aquatic plant systems. Fe plaque on the root surface, rhizobacterial number and bacterial activity play significant roles in the removal of target pollutants.
doi_str_mv 10.1007/s11104-017-3359-x
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2010206222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A514449306</galeid><jstor_id>26651528</jstor_id><sourcerecordid>A514449306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-c4dc8a62dfe546b2ba770072e7b95e1d0da81738576121f22265a224b267080d3</originalsourceid><addsrcrecordid>eNp9kV2L1TAQhosoeFz9AV4IAW-86TpJmqS9PCx-wYI3Ct6FtJ2ezaFNjpkcd_XXm1LxC5FAwiTvM5mZt6qecrjkAOYlcc6hqYGbWkrV1Xf3qh1XRtYKpL5f7QCkqMF0nx5Wj4iOsMZc76rjngiJFgyZxYmlG_8t0ukGE7JTigOur2yKiSVc4hcfDuzWZUx1H1NAtrghxdmPyFzIvvcx-4GYD2yIgXI6DxlHdot5dmGkx9WDyc2ET36cF9XH168-XL2tr9-_eXe1v66HRra57OPQOi3GCVWje9E7Y0qHAk3fKeQjjK7lRrbKaC74JITQygnR9EIbaGGUF9WLLW9p4PMZKdvF04BzKQLjmawADgJ0AYv0-V_SYzynUKqzvNOSGw2y-aU6uBmtD1PMyQ1rUrtXvGmaToIuqst_qMoacfFlHjj5cv8HwDegzJAo4WRPyS8ufbUc7Gqq3Uy1xVS7mmrvCiM2hoo2HDD9VvB_oGcbdKQc089fhNaKK9HK7z00rf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1963176034</pqid></control><display><type>article</type><title>Assessment of rhizosphere processes for removing water-borne macrolide antibiotics in constructed wetlands</title><source>JSTOR-E-Journals</source><source>Springer Link</source><creator>Tai, Yiping ; Tam, Nora Fung-Yee ; Dai, Yunv ; Yang, Yang ; Lin, Jianhua ; Tao, Ran ; Yang, Yufen ; Wang, Jiaxi ; Wang, Rui ; Huang, Wenda ; Xu, Xiaodan</creator><creatorcontrib>Tai, Yiping ; Tam, Nora Fung-Yee ; Dai, Yunv ; Yang, Yang ; Lin, Jianhua ; Tao, Ran ; Yang, Yufen ; Wang, Jiaxi ; Wang, Rui ; Huang, Wenda ; Xu, Xiaodan</creatorcontrib><description>Aims Limited information is available on plant rhizosphere processes for removing antibiotics in antibiotic-contaminated waters. This study identifies rhizosphere processes and evaluates their relative contributions for the macrolides (ML) removal in aquatic plant systems. Methods A flask-scale experiment (100 and 300 μg/L ML) incorporating Juncus effuses and Canna indica was used to identify the root adsorption, rhizobacterial influences, and plant uptake responsible for the ML (i.e., anhydroerythromycin A, roxithromycin, clarithromycin and tilmicosin) removal. Results Total ML removal rates due to rhizosphere processes were respectively 43.7–67.6% and 44.3–82.2% at 100 and 300 μg/L ML. J. effuses removed ML more effectively than C. indica (P &lt; 0.05). The relative contribution of rhizospheric pathways to remove all ML followed the order: root sorption &gt; rhizobacterial influence &gt; plant uptake (P &lt; 0.01). Sorption and rhizobacterial activity were important removal pathways in wetland plant microcosms, accounting for 36.5–72.8% and 20.5–54.2% of the total rhizosphere associated removal of ML, respectively. Conclusions Root sorption and rhizobacterial influence were the main rhizospheric pathways of ML removal in aquatic plant systems. Fe plaque on the root surface, rhizobacterial number and bacterial activity play significant roles in the removal of target pollutants.</description><identifier>ISSN: 0032-079X</identifier><identifier>EISSN: 1573-5036</identifier><identifier>DOI: 10.1007/s11104-017-3359-x</identifier><language>eng</language><publisher>Cham: Springer</publisher><subject>antibiotic residues ; Antibiotics ; Aquatic plants ; Artificial wetlands ; Bacteria ; Biomedical and Life Sciences ; Canna indica ; Chemical properties ; Clarithromycin ; Constructed wetlands ; Ecology ; Environmental aspects ; iron ; Juncus effusus ; Life Sciences ; Macrolide antibiotics ; microbial activity ; Microcosms ; phytoremediation ; Plant Physiology ; Plant Sciences ; Pollutants ; Regular Article ; Rhizosphere ; Roxithromycin ; Soil Science &amp; Conservation ; Sorption ; Tilmicosin ; water pollution ; wetland plants ; Wetlands</subject><ispartof>Plant and soil, 2017-10, Vol.419 (1/2), p.489-502</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2017</rights><rights>Springer International Publishing AG 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Plant and Soil is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-c4dc8a62dfe546b2ba770072e7b95e1d0da81738576121f22265a224b267080d3</citedby><cites>FETCH-LOGICAL-c438t-c4dc8a62dfe546b2ba770072e7b95e1d0da81738576121f22265a224b267080d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26651528$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26651528$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,58213,58446</link.rule.ids></links><search><creatorcontrib>Tai, Yiping</creatorcontrib><creatorcontrib>Tam, Nora Fung-Yee</creatorcontrib><creatorcontrib>Dai, Yunv</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Lin, Jianhua</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><creatorcontrib>Yang, Yufen</creatorcontrib><creatorcontrib>Wang, Jiaxi</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Huang, Wenda</creatorcontrib><creatorcontrib>Xu, Xiaodan</creatorcontrib><title>Assessment of rhizosphere processes for removing water-borne macrolide antibiotics in constructed wetlands</title><title>Plant and soil</title><addtitle>Plant Soil</addtitle><description>Aims Limited information is available on plant rhizosphere processes for removing antibiotics in antibiotic-contaminated waters. This study identifies rhizosphere processes and evaluates their relative contributions for the macrolides (ML) removal in aquatic plant systems. Methods A flask-scale experiment (100 and 300 μg/L ML) incorporating Juncus effuses and Canna indica was used to identify the root adsorption, rhizobacterial influences, and plant uptake responsible for the ML (i.e., anhydroerythromycin A, roxithromycin, clarithromycin and tilmicosin) removal. Results Total ML removal rates due to rhizosphere processes were respectively 43.7–67.6% and 44.3–82.2% at 100 and 300 μg/L ML. J. effuses removed ML more effectively than C. indica (P &lt; 0.05). The relative contribution of rhizospheric pathways to remove all ML followed the order: root sorption &gt; rhizobacterial influence &gt; plant uptake (P &lt; 0.01). Sorption and rhizobacterial activity were important removal pathways in wetland plant microcosms, accounting for 36.5–72.8% and 20.5–54.2% of the total rhizosphere associated removal of ML, respectively. Conclusions Root sorption and rhizobacterial influence were the main rhizospheric pathways of ML removal in aquatic plant systems. Fe plaque on the root surface, rhizobacterial number and bacterial activity play significant roles in the removal of target pollutants.</description><subject>antibiotic residues</subject><subject>Antibiotics</subject><subject>Aquatic plants</subject><subject>Artificial wetlands</subject><subject>Bacteria</subject><subject>Biomedical and Life Sciences</subject><subject>Canna indica</subject><subject>Chemical properties</subject><subject>Clarithromycin</subject><subject>Constructed wetlands</subject><subject>Ecology</subject><subject>Environmental aspects</subject><subject>iron</subject><subject>Juncus effusus</subject><subject>Life Sciences</subject><subject>Macrolide antibiotics</subject><subject>microbial activity</subject><subject>Microcosms</subject><subject>phytoremediation</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Pollutants</subject><subject>Regular Article</subject><subject>Rhizosphere</subject><subject>Roxithromycin</subject><subject>Soil Science &amp; Conservation</subject><subject>Sorption</subject><subject>Tilmicosin</subject><subject>water pollution</subject><subject>wetland plants</subject><subject>Wetlands</subject><issn>0032-079X</issn><issn>1573-5036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kV2L1TAQhosoeFz9AV4IAW-86TpJmqS9PCx-wYI3Ct6FtJ2ezaFNjpkcd_XXm1LxC5FAwiTvM5mZt6qecrjkAOYlcc6hqYGbWkrV1Xf3qh1XRtYKpL5f7QCkqMF0nx5Wj4iOsMZc76rjngiJFgyZxYmlG_8t0ukGE7JTigOur2yKiSVc4hcfDuzWZUx1H1NAtrghxdmPyFzIvvcx-4GYD2yIgXI6DxlHdot5dmGkx9WDyc2ET36cF9XH168-XL2tr9-_eXe1v66HRra57OPQOi3GCVWje9E7Y0qHAk3fKeQjjK7lRrbKaC74JITQygnR9EIbaGGUF9WLLW9p4PMZKdvF04BzKQLjmawADgJ0AYv0-V_SYzynUKqzvNOSGw2y-aU6uBmtD1PMyQ1rUrtXvGmaToIuqst_qMoacfFlHjj5cv8HwDegzJAo4WRPyS8ufbUc7Gqq3Uy1xVS7mmrvCiM2hoo2HDD9VvB_oGcbdKQc089fhNaKK9HK7z00rf0</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Tai, Yiping</creator><creator>Tam, Nora Fung-Yee</creator><creator>Dai, Yunv</creator><creator>Yang, Yang</creator><creator>Lin, Jianhua</creator><creator>Tao, Ran</creator><creator>Yang, Yufen</creator><creator>Wang, Jiaxi</creator><creator>Wang, Rui</creator><creator>Huang, Wenda</creator><creator>Xu, Xiaodan</creator><general>Springer</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>88A</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20171001</creationdate><title>Assessment of rhizosphere processes for removing water-borne macrolide antibiotics in constructed wetlands</title><author>Tai, Yiping ; Tam, Nora Fung-Yee ; Dai, Yunv ; Yang, Yang ; Lin, Jianhua ; Tao, Ran ; Yang, Yufen ; Wang, Jiaxi ; Wang, Rui ; Huang, Wenda ; Xu, Xiaodan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-c4dc8a62dfe546b2ba770072e7b95e1d0da81738576121f22265a224b267080d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>antibiotic residues</topic><topic>Antibiotics</topic><topic>Aquatic plants</topic><topic>Artificial wetlands</topic><topic>Bacteria</topic><topic>Biomedical and Life Sciences</topic><topic>Canna indica</topic><topic>Chemical properties</topic><topic>Clarithromycin</topic><topic>Constructed wetlands</topic><topic>Ecology</topic><topic>Environmental aspects</topic><topic>iron</topic><topic>Juncus effusus</topic><topic>Life Sciences</topic><topic>Macrolide antibiotics</topic><topic>microbial activity</topic><topic>Microcosms</topic><topic>phytoremediation</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Pollutants</topic><topic>Regular Article</topic><topic>Rhizosphere</topic><topic>Roxithromycin</topic><topic>Soil Science &amp; Conservation</topic><topic>Sorption</topic><topic>Tilmicosin</topic><topic>water pollution</topic><topic>wetland plants</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tai, Yiping</creatorcontrib><creatorcontrib>Tam, Nora Fung-Yee</creatorcontrib><creatorcontrib>Dai, Yunv</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Lin, Jianhua</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><creatorcontrib>Yang, Yufen</creatorcontrib><creatorcontrib>Wang, Jiaxi</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Huang, Wenda</creatorcontrib><creatorcontrib>Xu, Xiaodan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Plant and soil</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tai, Yiping</au><au>Tam, Nora Fung-Yee</au><au>Dai, Yunv</au><au>Yang, Yang</au><au>Lin, Jianhua</au><au>Tao, Ran</au><au>Yang, Yufen</au><au>Wang, Jiaxi</au><au>Wang, Rui</au><au>Huang, Wenda</au><au>Xu, Xiaodan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of rhizosphere processes for removing water-borne macrolide antibiotics in constructed wetlands</atitle><jtitle>Plant and soil</jtitle><stitle>Plant Soil</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>419</volume><issue>1/2</issue><spage>489</spage><epage>502</epage><pages>489-502</pages><issn>0032-079X</issn><eissn>1573-5036</eissn><abstract>Aims Limited information is available on plant rhizosphere processes for removing antibiotics in antibiotic-contaminated waters. This study identifies rhizosphere processes and evaluates their relative contributions for the macrolides (ML) removal in aquatic plant systems. Methods A flask-scale experiment (100 and 300 μg/L ML) incorporating Juncus effuses and Canna indica was used to identify the root adsorption, rhizobacterial influences, and plant uptake responsible for the ML (i.e., anhydroerythromycin A, roxithromycin, clarithromycin and tilmicosin) removal. Results Total ML removal rates due to rhizosphere processes were respectively 43.7–67.6% and 44.3–82.2% at 100 and 300 μg/L ML. J. effuses removed ML more effectively than C. indica (P &lt; 0.05). The relative contribution of rhizospheric pathways to remove all ML followed the order: root sorption &gt; rhizobacterial influence &gt; plant uptake (P &lt; 0.01). Sorption and rhizobacterial activity were important removal pathways in wetland plant microcosms, accounting for 36.5–72.8% and 20.5–54.2% of the total rhizosphere associated removal of ML, respectively. Conclusions Root sorption and rhizobacterial influence were the main rhizospheric pathways of ML removal in aquatic plant systems. Fe plaque on the root surface, rhizobacterial number and bacterial activity play significant roles in the removal of target pollutants.</abstract><cop>Cham</cop><pub>Springer</pub><doi>10.1007/s11104-017-3359-x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-079X
ispartof Plant and soil, 2017-10, Vol.419 (1/2), p.489-502
issn 0032-079X
1573-5036
language eng
recordid cdi_proquest_miscellaneous_2010206222
source JSTOR-E-Journals; Springer Link
subjects antibiotic residues
Antibiotics
Aquatic plants
Artificial wetlands
Bacteria
Biomedical and Life Sciences
Canna indica
Chemical properties
Clarithromycin
Constructed wetlands
Ecology
Environmental aspects
iron
Juncus effusus
Life Sciences
Macrolide antibiotics
microbial activity
Microcosms
phytoremediation
Plant Physiology
Plant Sciences
Pollutants
Regular Article
Rhizosphere
Roxithromycin
Soil Science & Conservation
Sorption
Tilmicosin
water pollution
wetland plants
Wetlands
title Assessment of rhizosphere processes for removing water-borne macrolide antibiotics in constructed wetlands
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A04%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20rhizosphere%20processes%20for%20removing%20water-borne%20macrolide%20antibiotics%20in%20constructed%20wetlands&rft.jtitle=Plant%20and%20soil&rft.au=Tai,%20Yiping&rft.date=2017-10-01&rft.volume=419&rft.issue=1/2&rft.spage=489&rft.epage=502&rft.pages=489-502&rft.issn=0032-079X&rft.eissn=1573-5036&rft_id=info:doi/10.1007/s11104-017-3359-x&rft_dat=%3Cgale_proqu%3EA514449306%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-c4dc8a62dfe546b2ba770072e7b95e1d0da81738576121f22265a224b267080d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1963176034&rft_id=info:pmid/&rft_galeid=A514449306&rft_jstor_id=26651528&rfr_iscdi=true