Loading…

Spatial resolution for EEG source reconstruction—A simulation study on SEPs

•The distinguishability of two sources can serve quantify the EEG’s ‘spatial resolution’.•Spatial pre-whitening improves accuracy/separability irrespective of the used inverse method.•After spatial pre-whitening, self-consistent MUSIC algorithm provides the best separability. The accuracy of source...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuroscience methods 2018-05, Vol.301, p.9-17
Main Authors: Kalogianni, Konstantina, de Munck, Jan C., Nolte, Guido, Vardy, Alistair N., van der Helm, Frans C.T., Daffertshofer, Andreas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:•The distinguishability of two sources can serve quantify the EEG’s ‘spatial resolution’.•Spatial pre-whitening improves accuracy/separability irrespective of the used inverse method.•After spatial pre-whitening, self-consistent MUSIC algorithm provides the best separability. The accuracy of source reconstruction depends on the spatial configuration of the neural sources underlying encephalographic signals, the temporal distance of the source activity, the level and structure of noise in the recordings, and – of course – on the employed inverse method. This plenitude of factors renders a definition of ‘spatial resolution’ of the electro-encephalogram (EEG) a challenge. A proper definition of spatial resolution requires a ground truth. We used data from numerical simulations of two dipoles changed with waveforms resembling somatosensory evoked potentials peaking at 20, 30, 50, 100 ms. We varied inter-dipole distances and added noise to the simulated scalp recordings with distinct signal-to-noise ratios (SNRs). Prior to inverse modeling we pre-whitened the simulated data and the leadfield. We tested a two-dipole fit, sc-MUSIC, and sc-eLORETA and assessed their accuracy via the distance between the simulated and estimated sources. To quantify the spatial resolution of EEG, we introduced the notion of separability, i.e. the separation of two dipolar sources with a certain inter-dipole distance. Our results indicate separability of two sources in the presence of realistic noise with SNR up to 3 if they are 11 mm or further apart. In the presence of realistic noise, spatial pre-whitening appears mandatory preprocessing step irrespective of the inverse method employed. Separability is a legitimate measure to quantify EEG’s spatial resolution. An optimal resolution in source reconstruction requires spatial pre-whitening as a crucial pre-processing step.
ISSN:0165-0270
1872-678X
DOI:10.1016/j.jneumeth.2018.02.016