Loading…

Phenylketonuric diet negatively impacts on butyrate production

Phenylalanine (Phe) restricted diet, combined with Phe-free l-amino acid supplementation, is the mainstay of treatment for phenylketonuria (PKU). Being the diet a key factor modulating gut microbiota composition, the aim of the present paper was to compare dietary intakes, gut microbiota biodiversit...

Full description

Saved in:
Bibliographic Details
Published in:Nutrition, metabolism, and cardiovascular diseases metabolism, and cardiovascular diseases, 2018-04, Vol.28 (4), p.385-392
Main Authors: Verduci, E., Moretti, F., Bassanini, G., Banderali, G., Rovelli, V., Casiraghi, M.C., Morace, G., Borgo, F., Borghi, E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phenylalanine (Phe) restricted diet, combined with Phe-free l-amino acid supplementation, is the mainstay of treatment for phenylketonuria (PKU). Being the diet a key factor modulating gut microbiota composition, the aim of the present paper was to compare dietary intakes, gut microbiota biodiversity and short chain fatty acids (SCFAs) production in children with PKU, on low-Phe diet, and in children with mild hyperphenylalaninemia (MHP), on unrestricted diet. We enrolled 21 PKU and 21 MHP children matched for gender, age and body mass index z-score. Dietary intakes, including glycemic index (GI) and glycemic load (GL), and fecal microbiota analyses, by means of denaturing gradient gel electrophoresis (DGGE) and Real-time PCR were assessed. Fecal SCFAs were quantified by gas chromatographic analysis. We observed an increased carbohydrate (% of total energy), fiber and vegetables intakes (g/day) in PKU compared with MHP children (p = 0.047), as well a higher daily GI and GL (maximum p 
ISSN:0939-4753
1590-3729
DOI:10.1016/j.numecd.2018.01.004