Loading…
Photonic crystal nanocavity with a Q factor exceeding eleven million
Photonic crystal nanocavities that simultaneously possess small modal volumes and high quality (Q) factors have opened up novel research areas in photonics during this decade. Here, we present an important key for the increase of Q factors to ranges beyond ten million. A systematic investigation on...
Saved in:
Published in: | Optics express 2017-02, Vol.25 (3), p.1769-1777 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Photonic crystal nanocavities that simultaneously possess small modal volumes and high quality (Q) factors have opened up novel research areas in photonics during this decade. Here, we present an important key for the increase of Q factors to ranges beyond ten million. A systematic investigation on photon lifetimes of air-bridge-type heterostructure nanocavities fabricated from silicon on insulator (SOI) substrates indicated the importance of cleaning the bottom side (buried oxide side) of the nanaocavites. Repeated thermal oxidation and an oxide removal process applied after the removal of the buried oxide layer underneath the nanocavities realized an experimental Q factor greater than eleven million, which is the highest experimental Q ever recorded. The results provide important information not only for Si PC nanocavities but also for general Si nanophotonic devices and photonic electronic convergence systems. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.25.001769 |