Loading…

Microbial biodegradation of biuret: defining biuret hydrolases within the isochorismatase superfamily

Summary Biuret is a minor component of urea fertilizer and an intermediate in s‐triazine herbicide biodegradation. The microbial metabolism of biuret has never been comprehensively studied. Here, we enriched and isolated bacteria from a potato field that grew on biuret as a sole nitrogen source. We...

Full description

Saved in:
Bibliographic Details
Published in:Environmental microbiology 2018-06, Vol.20 (6), p.2099-2111
Main Authors: Robinson, Serina L., Badalamenti, Jonathan P., Dodge, Anthony G., Tassoulas, Lambros J., Wackett, Lawrence P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4374-d13fe12a2a4a6dd4c7c2d9417cb0972eae033d6adc2d5930ffb5cafcdf3b8f4a3
cites cdi_FETCH-LOGICAL-c4374-d13fe12a2a4a6dd4c7c2d9417cb0972eae033d6adc2d5930ffb5cafcdf3b8f4a3
container_end_page 2111
container_issue 6
container_start_page 2099
container_title Environmental microbiology
container_volume 20
creator Robinson, Serina L.
Badalamenti, Jonathan P.
Dodge, Anthony G.
Tassoulas, Lambros J.
Wackett, Lawrence P.
description Summary Biuret is a minor component of urea fertilizer and an intermediate in s‐triazine herbicide biodegradation. The microbial metabolism of biuret has never been comprehensively studied. Here, we enriched and isolated bacteria from a potato field that grew on biuret as a sole nitrogen source. We sequenced the genome of the fastest‐growing isolate, Herbaspirillum sp. BH‐1 and identified genes encoding putative biuret hydrolases (BHs). We purified and characterized a functional BH enzyme from Herbaspirillum sp. BH‐1 and two other bacteria from divergent phyla. The BH enzymes reacted exclusively with biuret in the range of 2‐11 µmol min−1 mg−1 protein. We then constructed a global protein superfamily network to map structure‐function relationships in the BH subfamily and used this to mine > 7000 genomes. High‐confidence BH sequences were detected in Actinobacteria, Alpha‐ and Beta‐proteobacteria, and some fungi, archaea and green algae, but not animals or land plants. Unexpectedly, no cyanuric acid hydrolase homologs were detected in > 90% of genomes with BH homologs, suggesting BHs may have arisen independently of s‐triazine ring metabolism. This work links genotype to phenotype by enabling accurate genome‐mining to predict microbial utilization of biuret. Importantly, it advances understanding of the microbial capacity for biuret biodegradation in agricultural systems.
doi_str_mv 10.1111/1462-2920.14094
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2013104512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2089345692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4374-d13fe12a2a4a6dd4c7c2d9417cb0972eae033d6adc2d5930ffb5cafcdf3b8f4a3</originalsourceid><addsrcrecordid>eNqFkb1PwzAQxS0EoqUws6FILCyl_krTsKGqQKVWLDBbjn1uXSVxsRNV-e9xaenAgpez3_3uyXqH0C3BjySeEeFjOqQ5jU-Oc36G-ifl_HQntIeuQthgTDKW4UvUo3lKJ2mK-wiWVnlXWFkmhXUaVl5q2VhXJ85EpfXQPCUajK1tvToKybrT3pUyQEh2tlnbOmnWkNjg1Np5GyrZxF4S2i14IytbdtfowsgywM2xDtDny-xj-jZcvL_Op8-LoeIs40NNmAFCJZVcjrXmKlNU55xkqsB5RkECZkyPpY5ymjNsTJEqaZQ2rJgYLtkAPRx8t959tRAaUdmgoCxlDa4NgmLCCOYpoRG9_4NuXOvr-LtITXLG03G-p0YHKoYUggcjtt5W0neCYLHfgNhnLPZ5i58NxIm7o29bVKBP_G_kEUgPwM6W0P3nJ2bL-cH4G3DTkjk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089345692</pqid></control><display><type>article</type><title>Microbial biodegradation of biuret: defining biuret hydrolases within the isochorismatase superfamily</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Robinson, Serina L. ; Badalamenti, Jonathan P. ; Dodge, Anthony G. ; Tassoulas, Lambros J. ; Wackett, Lawrence P.</creator><creatorcontrib>Robinson, Serina L. ; Badalamenti, Jonathan P. ; Dodge, Anthony G. ; Tassoulas, Lambros J. ; Wackett, Lawrence P.</creatorcontrib><description>Summary Biuret is a minor component of urea fertilizer and an intermediate in s‐triazine herbicide biodegradation. The microbial metabolism of biuret has never been comprehensively studied. Here, we enriched and isolated bacteria from a potato field that grew on biuret as a sole nitrogen source. We sequenced the genome of the fastest‐growing isolate, Herbaspirillum sp. BH‐1 and identified genes encoding putative biuret hydrolases (BHs). We purified and characterized a functional BH enzyme from Herbaspirillum sp. BH‐1 and two other bacteria from divergent phyla. The BH enzymes reacted exclusively with biuret in the range of 2‐11 µmol min−1 mg−1 protein. We then constructed a global protein superfamily network to map structure‐function relationships in the BH subfamily and used this to mine &gt; 7000 genomes. High‐confidence BH sequences were detected in Actinobacteria, Alpha‐ and Beta‐proteobacteria, and some fungi, archaea and green algae, but not animals or land plants. Unexpectedly, no cyanuric acid hydrolase homologs were detected in &gt; 90% of genomes with BH homologs, suggesting BHs may have arisen independently of s‐triazine ring metabolism. This work links genotype to phenotype by enabling accurate genome‐mining to predict microbial utilization of biuret. Importantly, it advances understanding of the microbial capacity for biuret biodegradation in agricultural systems.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.14094</identifier><identifier>PMID: 29528550</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Agrochemicals ; Algae ; Aquatic plants ; Archaea ; Bacteria ; Biodegradation ; Capacity ; Cyanuric acid ; Fertilizers ; Fungi ; Gene sequencing ; Genomes ; Genotypes ; Herbicides ; Homology ; Hydrolase ; Hydrolases ; Isochorismatase ; Metabolism ; Microorganisms ; Phenotypes ; Potatoes ; Proteins ; Rings (mathematics) ; Structure-function relationships ; Triazine ; Urea</subject><ispartof>Environmental microbiology, 2018-06, Vol.20 (6), p.2099-2111</ispartof><rights>2018 Society for Applied Microbiology and John Wiley &amp; Sons Ltd</rights><rights>2018 Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4374-d13fe12a2a4a6dd4c7c2d9417cb0972eae033d6adc2d5930ffb5cafcdf3b8f4a3</citedby><cites>FETCH-LOGICAL-c4374-d13fe12a2a4a6dd4c7c2d9417cb0972eae033d6adc2d5930ffb5cafcdf3b8f4a3</cites><orcidid>0000-0001-6947-7913 ; 0000-0001-8988-7717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29528550$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Robinson, Serina L.</creatorcontrib><creatorcontrib>Badalamenti, Jonathan P.</creatorcontrib><creatorcontrib>Dodge, Anthony G.</creatorcontrib><creatorcontrib>Tassoulas, Lambros J.</creatorcontrib><creatorcontrib>Wackett, Lawrence P.</creatorcontrib><title>Microbial biodegradation of biuret: defining biuret hydrolases within the isochorismatase superfamily</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary Biuret is a minor component of urea fertilizer and an intermediate in s‐triazine herbicide biodegradation. The microbial metabolism of biuret has never been comprehensively studied. Here, we enriched and isolated bacteria from a potato field that grew on biuret as a sole nitrogen source. We sequenced the genome of the fastest‐growing isolate, Herbaspirillum sp. BH‐1 and identified genes encoding putative biuret hydrolases (BHs). We purified and characterized a functional BH enzyme from Herbaspirillum sp. BH‐1 and two other bacteria from divergent phyla. The BH enzymes reacted exclusively with biuret in the range of 2‐11 µmol min−1 mg−1 protein. We then constructed a global protein superfamily network to map structure‐function relationships in the BH subfamily and used this to mine &gt; 7000 genomes. High‐confidence BH sequences were detected in Actinobacteria, Alpha‐ and Beta‐proteobacteria, and some fungi, archaea and green algae, but not animals or land plants. Unexpectedly, no cyanuric acid hydrolase homologs were detected in &gt; 90% of genomes with BH homologs, suggesting BHs may have arisen independently of s‐triazine ring metabolism. This work links genotype to phenotype by enabling accurate genome‐mining to predict microbial utilization of biuret. Importantly, it advances understanding of the microbial capacity for biuret biodegradation in agricultural systems.</description><subject>Agrochemicals</subject><subject>Algae</subject><subject>Aquatic plants</subject><subject>Archaea</subject><subject>Bacteria</subject><subject>Biodegradation</subject><subject>Capacity</subject><subject>Cyanuric acid</subject><subject>Fertilizers</subject><subject>Fungi</subject><subject>Gene sequencing</subject><subject>Genomes</subject><subject>Genotypes</subject><subject>Herbicides</subject><subject>Homology</subject><subject>Hydrolase</subject><subject>Hydrolases</subject><subject>Isochorismatase</subject><subject>Metabolism</subject><subject>Microorganisms</subject><subject>Phenotypes</subject><subject>Potatoes</subject><subject>Proteins</subject><subject>Rings (mathematics)</subject><subject>Structure-function relationships</subject><subject>Triazine</subject><subject>Urea</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkb1PwzAQxS0EoqUws6FILCyl_krTsKGqQKVWLDBbjn1uXSVxsRNV-e9xaenAgpez3_3uyXqH0C3BjySeEeFjOqQ5jU-Oc36G-ifl_HQntIeuQthgTDKW4UvUo3lKJ2mK-wiWVnlXWFkmhXUaVl5q2VhXJ85EpfXQPCUajK1tvToKybrT3pUyQEh2tlnbOmnWkNjg1Np5GyrZxF4S2i14IytbdtfowsgywM2xDtDny-xj-jZcvL_Op8-LoeIs40NNmAFCJZVcjrXmKlNU55xkqsB5RkECZkyPpY5ymjNsTJEqaZQ2rJgYLtkAPRx8t959tRAaUdmgoCxlDa4NgmLCCOYpoRG9_4NuXOvr-LtITXLG03G-p0YHKoYUggcjtt5W0neCYLHfgNhnLPZ5i58NxIm7o29bVKBP_G_kEUgPwM6W0P3nJ2bL-cH4G3DTkjk</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Robinson, Serina L.</creator><creator>Badalamenti, Jonathan P.</creator><creator>Dodge, Anthony G.</creator><creator>Tassoulas, Lambros J.</creator><creator>Wackett, Lawrence P.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6947-7913</orcidid><orcidid>https://orcid.org/0000-0001-8988-7717</orcidid></search><sort><creationdate>201806</creationdate><title>Microbial biodegradation of biuret: defining biuret hydrolases within the isochorismatase superfamily</title><author>Robinson, Serina L. ; Badalamenti, Jonathan P. ; Dodge, Anthony G. ; Tassoulas, Lambros J. ; Wackett, Lawrence P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4374-d13fe12a2a4a6dd4c7c2d9417cb0972eae033d6adc2d5930ffb5cafcdf3b8f4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agrochemicals</topic><topic>Algae</topic><topic>Aquatic plants</topic><topic>Archaea</topic><topic>Bacteria</topic><topic>Biodegradation</topic><topic>Capacity</topic><topic>Cyanuric acid</topic><topic>Fertilizers</topic><topic>Fungi</topic><topic>Gene sequencing</topic><topic>Genomes</topic><topic>Genotypes</topic><topic>Herbicides</topic><topic>Homology</topic><topic>Hydrolase</topic><topic>Hydrolases</topic><topic>Isochorismatase</topic><topic>Metabolism</topic><topic>Microorganisms</topic><topic>Phenotypes</topic><topic>Potatoes</topic><topic>Proteins</topic><topic>Rings (mathematics)</topic><topic>Structure-function relationships</topic><topic>Triazine</topic><topic>Urea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robinson, Serina L.</creatorcontrib><creatorcontrib>Badalamenti, Jonathan P.</creatorcontrib><creatorcontrib>Dodge, Anthony G.</creatorcontrib><creatorcontrib>Tassoulas, Lambros J.</creatorcontrib><creatorcontrib>Wackett, Lawrence P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robinson, Serina L.</au><au>Badalamenti, Jonathan P.</au><au>Dodge, Anthony G.</au><au>Tassoulas, Lambros J.</au><au>Wackett, Lawrence P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial biodegradation of biuret: defining biuret hydrolases within the isochorismatase superfamily</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2018-06</date><risdate>2018</risdate><volume>20</volume><issue>6</issue><spage>2099</spage><epage>2111</epage><pages>2099-2111</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary Biuret is a minor component of urea fertilizer and an intermediate in s‐triazine herbicide biodegradation. The microbial metabolism of biuret has never been comprehensively studied. Here, we enriched and isolated bacteria from a potato field that grew on biuret as a sole nitrogen source. We sequenced the genome of the fastest‐growing isolate, Herbaspirillum sp. BH‐1 and identified genes encoding putative biuret hydrolases (BHs). We purified and characterized a functional BH enzyme from Herbaspirillum sp. BH‐1 and two other bacteria from divergent phyla. The BH enzymes reacted exclusively with biuret in the range of 2‐11 µmol min−1 mg−1 protein. We then constructed a global protein superfamily network to map structure‐function relationships in the BH subfamily and used this to mine &gt; 7000 genomes. High‐confidence BH sequences were detected in Actinobacteria, Alpha‐ and Beta‐proteobacteria, and some fungi, archaea and green algae, but not animals or land plants. Unexpectedly, no cyanuric acid hydrolase homologs were detected in &gt; 90% of genomes with BH homologs, suggesting BHs may have arisen independently of s‐triazine ring metabolism. This work links genotype to phenotype by enabling accurate genome‐mining to predict microbial utilization of biuret. Importantly, it advances understanding of the microbial capacity for biuret biodegradation in agricultural systems.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29528550</pmid><doi>10.1111/1462-2920.14094</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6947-7913</orcidid><orcidid>https://orcid.org/0000-0001-8988-7717</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2018-06, Vol.20 (6), p.2099-2111
issn 1462-2912
1462-2920
language eng
recordid cdi_proquest_miscellaneous_2013104512
source Wiley-Blackwell Read & Publish Collection
subjects Agrochemicals
Algae
Aquatic plants
Archaea
Bacteria
Biodegradation
Capacity
Cyanuric acid
Fertilizers
Fungi
Gene sequencing
Genomes
Genotypes
Herbicides
Homology
Hydrolase
Hydrolases
Isochorismatase
Metabolism
Microorganisms
Phenotypes
Potatoes
Proteins
Rings (mathematics)
Structure-function relationships
Triazine
Urea
title Microbial biodegradation of biuret: defining biuret hydrolases within the isochorismatase superfamily
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A32%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20biodegradation%20of%20biuret:%20defining%20biuret%20hydrolases%20within%20the%20isochorismatase%20superfamily&rft.jtitle=Environmental%20microbiology&rft.au=Robinson,%20Serina%20L.&rft.date=2018-06&rft.volume=20&rft.issue=6&rft.spage=2099&rft.epage=2111&rft.pages=2099-2111&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.14094&rft_dat=%3Cproquest_cross%3E2089345692%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4374-d13fe12a2a4a6dd4c7c2d9417cb0972eae033d6adc2d5930ffb5cafcdf3b8f4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2089345692&rft_id=info:pmid/29528550&rfr_iscdi=true