Loading…

Structural Basis for Resistance of the Genotype 2b Hepatitis C Virus NS5B Polymerase to Site A Non-Nucleoside Inhibitors

Hepatitis C virus (HCV) exists in six major genotypes. Compared with the 1b enzyme, genotype 2b HCV polymerase exhibits a more than 100-fold reduction in sensitivity to the indole-N-acetamide class of non-nucleoside inhibitors. These compounds have been shown to bind in a pocket occupied by helix A...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular biology 2009-07, Vol.390 (5), p.1048-1059
Main Authors: Rydberg, Edwin H., Cellucci, Antonella, Bartholomew, Linda, Mattu, Marco, Barbato, Gaetano, Ludmerer, Steven W., Graham, Donald J., Altamura, Sergio, Paonessa, Giacomo, De Francesco, Raffaele, Migliaccio, Giovanni, Carfí, Andrea
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hepatitis C virus (HCV) exists in six major genotypes. Compared with the 1b enzyme, genotype 2b HCV polymerase exhibits a more than 100-fold reduction in sensitivity to the indole-N-acetamide class of non-nucleoside inhibitors. These compounds have been shown to bind in a pocket occupied by helix A of the mobile Λ1 loop in the apoenzyme. The three-dimensional structure of the HCV polymerase from genotype 2b was determined to 1.9-Å resolution and compared with the genotype 1b enzyme. This structural analysis suggests that genotypic variants result in a different shape of the inhibitor binding site. Mutants of the inhibitor binding pocket were generated in a 1b enzyme and evaluated for their binding affinity and sensitivity to inhibition by indole-N-acetamides. Most of the point mutants showed little variation in activity and IC50, with the exception of 15- and 7-fold increases in IC50 for Leu392Ile and Val494Ala mutants (1b→2b), respectively. Furthermore, a 1b replicon with 20-fold resistance to this class of inhibitors was selected and shown to contain the Leu392Ile mutation. Chimeric enzymes, where the 2b fingertip Λ1 loop, pocket or both replaced the corresponding regions of the 1b enzyme, were also generated. The fingertip chimera retained 1b-like inhibitor binding affinity, whereas the other two chimeric constructs and the 2b enzyme displayed between 50- and 100-fold reduction in binding affinity. Together, these data suggest that differences in the amino acid composition and shape of the indole-N-acetamide binding pocket are responsible for the resistance of the 2b polymerase to this class of inhibitors.
ISSN:0022-2836
1089-8638
DOI:10.1016/j.jmb.2009.06.012