Loading…
Cisplatin suppresses proliferation, migration and invasion of nasopharyngeal carcinoma cells in vitro by repressing the Wnt/β-catenin/Endothelin-1 axis via activating B cell translocation gene 1
Purpose Nasopharyngeal carcinoma (NPC) is one of the most commonly diagnosed cancers worldwide with significantly high prevalence in Southern China. Chemoprevention of cancer with alkylating agent compounds could potentially reverse, suppress, or prevent cancer progression. Cisplatin (CIS) is an ant...
Saved in:
Published in: | Cancer chemotherapy and pharmacology 2018-05, Vol.81 (5), p.863-872 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
Nasopharyngeal carcinoma (NPC) is one of the most commonly diagnosed cancers worldwide with significantly high prevalence in Southern China. Chemoprevention of cancer with alkylating agent compounds could potentially reverse, suppress, or prevent cancer progression. Cisplatin (CIS) is an antineoplastic or cytotoxic platinum-based drug used for chemotherapy of different types of human cancers such as NPC. Nevertheless, the effects of CIS on the migration and invasion of human NPC cells and the underlying molecular mechanisms have not yet been fully scrutinized.
Methods
In this work, we tested the effect of CIS on the proliferation, migration and invasion of NPC cells. The results exhibited that this drug exerts remarkable inhibitory effects on the proliferation, migration and invasion of NPC cells in a dose-dependent manner. Western blotting and real time RT-PCR were used for expression analyses.
Results
We found that CIS treatment led to a dose-dependent inhibition of Endothelin-1 (ET1) expression, at protein as well as mRNA levels in NPC cells. CIS was also found to activate the expression of BTG1 in NPC cells. Moreover, mechanistic analyses revealed that CIS increased the expression of B cell translocation gene 1 (BTG1) to suppress the expression of ET1. Furthermore, we show that ET1 could not be induced in CIS-resistant cells with suppressed BTG1 expression, and subsequently demote the proliferation, migration and invasion of NPC cells.
Conclusions
These findings provided compelling evidence of the role of CIS in suppressing NPC metastasis and its underlying molecular mechanisms. |
---|---|
ISSN: | 0344-5704 1432-0843 |
DOI: | 10.1007/s00280-018-3536-5 |