Loading…

Gestational treatment with methylazoxymethanol (MAM) that disrupts hippocampal-dependent memory does not alter behavioural response to cocaine

Schizophrenia is associated with increased rates of substance abuse that are thought to be the result of changes in cortical and mesolimbic dopamine activity. Previous work has shown that gestational methylazoxymethanol acetate (MAM) treatment induces increased mesolimbic dopamine activity when give...

Full description

Saved in:
Bibliographic Details
Published in:Pharmacology, biochemistry and behavior biochemistry and behavior, 2009-10, Vol.93 (4), p.382-390
Main Authors: Featherstone, Robert E., Burton, Christie L., Coppa-Hopman, Romina, Rizos, Zoë, Sinyard, Judy, Kapur, Shitij, Fletcher, Paul J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Schizophrenia is associated with increased rates of substance abuse that are thought to be the result of changes in cortical and mesolimbic dopamine activity. Previous work has shown that gestational methylazoxymethanol acetate (MAM) treatment induces increased mesolimbic dopamine activity when given around the time of embryonic day 17 (ED17), suggesting that MAM treatment may model some aspects of schizophrenia. Given that increased dopaminergic activity facilitates aspects of drug self-administration and reinstatement of drug seeking, the current experiments sought to assess cocaine self-administration in MAM treated animals. Experiment 1 examined the acquisition of cocaine self-administration in ED17 MAM and saline treated rats using a sub-threshold dose of cocaine. In experiment 2 ED17 MAM and saline treated animals were trained to self-administer cocaine and were then assessed under varying doses of cocaine (dose–response), followed by extinction and drug-induced reinstatement of responding. A subset of these animals was trained on a win-shift radial maze task, designed to detect impairments in hippocampal-dependent memory. In experiment 3, MAM and saline treated animals were assessed on a progressive ratio schedule of cocaine delivery. Finally, in experiment 4 MAM and saline treated animals were assessed on cocaine-induced locomotor activity across a range of doses of cocaine. MAM treatment disrupted performance of the win-shift task but did not alter cocaine self-administration or cocaine-induced locomotion. Implications of these results for the MAM model of schizophrenia are discussed.
ISSN:0091-3057
1873-5177
DOI:10.1016/j.pbb.2009.05.010