Loading…

MIXOTROPHIC GROWTH MODIFIES THE RESPONSE OF SPIRULINA (ARTHROSPIRA) PLATENSIS (CYANOBACTERIA) CELLS TO LIGHT

Spirulina (Arthrospira) platensis (Nordstedt) Geitler cells grown under mixotrophic conditions exhibit a modified response to light. The maximal photosynthetic rate and the light saturation value of mixotrophic cultures were higher than those of the photoautotrophic cultures. Dark respiration and li...

Full description

Saved in:
Bibliographic Details
Published in:Journal of phycology 2000-08, Vol.36 (4), p.675-679
Main Authors: Vonshak, Avigad, Cheung, Suk Man, Chen, Feng
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spirulina (Arthrospira) platensis (Nordstedt) Geitler cells grown under mixotrophic conditions exhibit a modified response to light. The maximal photosynthetic rate and the light saturation value of mixotrophic cultures were higher than those of the photoautotrophic cultures. Dark respiration and light compensation point were also significantly higher in the mixotrophically grown cells. As expected, the mixotrophic cultures grew faster and achieved a higher biomass concentration than the photoautotrophic cultures. In contrast, the growth rate of the photoautotrophic cultures was more sensitive to light. The differences between the two cultures were also apparent in their responses to exposure to high photon flux density of 3000 μmol·m−2·s−1. The light‐dependent O2 evolution rate and the maximal efficiency of photosystem II photochemistry declined more rapidly in photoautotrophically grown than in mixotrophically grown cells as a result of exposure to high photon flux density. Although both cultures recovered from the high photon flux density stress, the mixotrophic culture recovered faster and to a higher extent. Based on the above results, growth of S. platensis with a fixed carbon source has a significant effect on photosynthetic activity.
ISSN:0022-3646
1529-8817
DOI:10.1046/j.1529-8817.2000.99198.x