Loading…
Spin-Glass Ground State in a Triangular-Lattice Compound YbZnGaO_{4}
We report on comprehensive results identifying the ground state of a triangular-lattice structured YbZnGaO_{4} as a spin glass, including no long-range magnetic order, prominent broad excitation continua, and the absence of magnetic thermal conductivity. More crucially, from the ultralow-temperature...
Saved in:
Published in: | Physical review letters 2018-02, Vol.120 (8), p.087201-087201 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report on comprehensive results identifying the ground state of a triangular-lattice structured YbZnGaO_{4} as a spin glass, including no long-range magnetic order, prominent broad excitation continua, and the absence of magnetic thermal conductivity. More crucially, from the ultralow-temperature ac susceptibility measurements, we unambiguously observe frequency-dependent peaks around 0.1 K, indicating the spin-glass ground state. We suggest this conclusion holds also for its sister compound YbMgGaO_{4}, which is confirmed by the observation of spin freezing at low temperatures. We consider disorder and frustration to be the main driving force for the spin-glass phase. |
---|---|
ISSN: | 1079-7114 |
DOI: | 10.1103/PhysRevLett.120.087201 |