Loading…

A Well-Tempered Hybrid Method for Solving Challenging Time-Dependent Density Functional Theory (TDDFT) Systems

The time-dependent Hartree–Fock (TDHF) and time-dependent density functional theory (TDDFT) equations allow one to probe electronic resonances of a system quickly and inexpensively. However, the iterative solution of the eigenvalue problem can be challenging or impossible to converge, using standard...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical theory and computation 2018-04, Vol.14 (4), p.2034-2041
Main Authors: Kasper, Joseph M, Williams-Young, David B, Vecharynski, Eugene, Yang, Chao, Li, Xiaosong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a364t-f1b50cdd3221450ba14ef50ae993bd966c5651c53e673cb0311e68c117ba34313
cites cdi_FETCH-LOGICAL-a364t-f1b50cdd3221450ba14ef50ae993bd966c5651c53e673cb0311e68c117ba34313
container_end_page 2041
container_issue 4
container_start_page 2034
container_title Journal of chemical theory and computation
container_volume 14
creator Kasper, Joseph M
Williams-Young, David B
Vecharynski, Eugene
Yang, Chao
Li, Xiaosong
description The time-dependent Hartree–Fock (TDHF) and time-dependent density functional theory (TDDFT) equations allow one to probe electronic resonances of a system quickly and inexpensively. However, the iterative solution of the eigenvalue problem can be challenging or impossible to converge, using standard methods such as the Davidson algorithm for spectrally dense regions in the interior of the spectrum, as are common in X-ray absorption spectroscopy (XAS). More robust solvers, such as the generalized preconditioned locally harmonic residual (GPLHR) method, can alleviate this problem, but at the expense of higher average computational cost. A hybrid method is proposed which adapts to the problem in order to maximize computational performance while providing the superior convergence of GPLHR. In addition, a modification to the GPLHR algorithm is proposed to adaptively choose the shift parameter to enforce a convergence of states above a predefined energy threshold.
doi_str_mv 10.1021/acs.jctc.8b00141
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2014954948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014954948</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-f1b50cdd3221450ba14ef50ae993bd966c5651c53e673cb0311e68c117ba34313</originalsourceid><addsrcrecordid>eNp1kUFP4zAQha0VaGHL3ve0ssSFlUjx2I7bHFG7BSQQB7LaY-Q4E5oqsbt2slL-PS4tHJA4zRy-90bzHiE_gE2BcbjSJkw3pjfTeckYSPhCTiGVWZIpro7ed5ifkG8hbBgTQnLxlZzwLJUzPoNTYq_pX2zbJMduix4rejuWvqnoA_ZrV9Haefrk2v-NfaaLtW5btM-7PW86TJa4RVuh7ekSbWj6ka4Ga_rGWd3SfI3Oj_QiXy5X-S_6NIYeu3BGjmvdBvx-mBPyZ_U7X9wm9483d4vr-0QLJfukhjJlpqoE5yBTVmqQWKdMY5aJssqUMqlKwaQC1UyYkgkAVHMDMCu1kALEhFzsfbfe_Rsw9EXXBBMf1RbdEAoe04oZZHIe0fMP6MYNPr6wo6TgikEMbkLYnjLeheCxLra-6bQfC2DFrosidlHsuigOXUTJz4PxUHZYvQvewo_A5R54lb4d_dTvBYypk5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2043260100</pqid></control><display><type>article</type><title>A Well-Tempered Hybrid Method for Solving Challenging Time-Dependent Density Functional Theory (TDDFT) Systems</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Kasper, Joseph M ; Williams-Young, David B ; Vecharynski, Eugene ; Yang, Chao ; Li, Xiaosong</creator><creatorcontrib>Kasper, Joseph M ; Williams-Young, David B ; Vecharynski, Eugene ; Yang, Chao ; Li, Xiaosong</creatorcontrib><description>The time-dependent Hartree–Fock (TDHF) and time-dependent density functional theory (TDDFT) equations allow one to probe electronic resonances of a system quickly and inexpensively. However, the iterative solution of the eigenvalue problem can be challenging or impossible to converge, using standard methods such as the Davidson algorithm for spectrally dense regions in the interior of the spectrum, as are common in X-ray absorption spectroscopy (XAS). More robust solvers, such as the generalized preconditioned locally harmonic residual (GPLHR) method, can alleviate this problem, but at the expense of higher average computational cost. A hybrid method is proposed which adapts to the problem in order to maximize computational performance while providing the superior convergence of GPLHR. In addition, a modification to the GPLHR algorithm is proposed to adaptively choose the shift parameter to enforce a convergence of states above a predefined energy threshold.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.8b00141</identifier><identifier>PMID: 29547271</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Convergence ; Density functional theory ; Iterative methods ; Iterative solution ; Solvers ; Time dependence</subject><ispartof>Journal of chemical theory and computation, 2018-04, Vol.14 (4), p.2034-2041</ispartof><rights>Copyright American Chemical Society Apr 10, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-f1b50cdd3221450ba14ef50ae993bd966c5651c53e673cb0311e68c117ba34313</citedby><cites>FETCH-LOGICAL-a364t-f1b50cdd3221450ba14ef50ae993bd966c5651c53e673cb0311e68c117ba34313</cites><orcidid>0000-0001-7341-6240 ; 0000-0002-3840-484X ; 0000-0003-2735-3706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29547271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kasper, Joseph M</creatorcontrib><creatorcontrib>Williams-Young, David B</creatorcontrib><creatorcontrib>Vecharynski, Eugene</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Li, Xiaosong</creatorcontrib><title>A Well-Tempered Hybrid Method for Solving Challenging Time-Dependent Density Functional Theory (TDDFT) Systems</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>The time-dependent Hartree–Fock (TDHF) and time-dependent density functional theory (TDDFT) equations allow one to probe electronic resonances of a system quickly and inexpensively. However, the iterative solution of the eigenvalue problem can be challenging or impossible to converge, using standard methods such as the Davidson algorithm for spectrally dense regions in the interior of the spectrum, as are common in X-ray absorption spectroscopy (XAS). More robust solvers, such as the generalized preconditioned locally harmonic residual (GPLHR) method, can alleviate this problem, but at the expense of higher average computational cost. A hybrid method is proposed which adapts to the problem in order to maximize computational performance while providing the superior convergence of GPLHR. In addition, a modification to the GPLHR algorithm is proposed to adaptively choose the shift parameter to enforce a convergence of states above a predefined energy threshold.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Density functional theory</subject><subject>Iterative methods</subject><subject>Iterative solution</subject><subject>Solvers</subject><subject>Time dependence</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kUFP4zAQha0VaGHL3ve0ssSFlUjx2I7bHFG7BSQQB7LaY-Q4E5oqsbt2slL-PS4tHJA4zRy-90bzHiE_gE2BcbjSJkw3pjfTeckYSPhCTiGVWZIpro7ed5ifkG8hbBgTQnLxlZzwLJUzPoNTYq_pX2zbJMduix4rejuWvqnoA_ZrV9Haefrk2v-NfaaLtW5btM-7PW86TJa4RVuh7ekSbWj6ka4Ga_rGWd3SfI3Oj_QiXy5X-S_6NIYeu3BGjmvdBvx-mBPyZ_U7X9wm9483d4vr-0QLJfukhjJlpqoE5yBTVmqQWKdMY5aJssqUMqlKwaQC1UyYkgkAVHMDMCu1kALEhFzsfbfe_Rsw9EXXBBMf1RbdEAoe04oZZHIe0fMP6MYNPr6wo6TgikEMbkLYnjLeheCxLra-6bQfC2DFrosidlHsuigOXUTJz4PxUHZYvQvewo_A5R54lb4d_dTvBYypk5w</recordid><startdate>20180410</startdate><enddate>20180410</enddate><creator>Kasper, Joseph M</creator><creator>Williams-Young, David B</creator><creator>Vecharynski, Eugene</creator><creator>Yang, Chao</creator><creator>Li, Xiaosong</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7341-6240</orcidid><orcidid>https://orcid.org/0000-0002-3840-484X</orcidid><orcidid>https://orcid.org/0000-0003-2735-3706</orcidid></search><sort><creationdate>20180410</creationdate><title>A Well-Tempered Hybrid Method for Solving Challenging Time-Dependent Density Functional Theory (TDDFT) Systems</title><author>Kasper, Joseph M ; Williams-Young, David B ; Vecharynski, Eugene ; Yang, Chao ; Li, Xiaosong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-f1b50cdd3221450ba14ef50ae993bd966c5651c53e673cb0311e68c117ba34313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Density functional theory</topic><topic>Iterative methods</topic><topic>Iterative solution</topic><topic>Solvers</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasper, Joseph M</creatorcontrib><creatorcontrib>Williams-Young, David B</creatorcontrib><creatorcontrib>Vecharynski, Eugene</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Li, Xiaosong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasper, Joseph M</au><au>Williams-Young, David B</au><au>Vecharynski, Eugene</au><au>Yang, Chao</au><au>Li, Xiaosong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Well-Tempered Hybrid Method for Solving Challenging Time-Dependent Density Functional Theory (TDDFT) Systems</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2018-04-10</date><risdate>2018</risdate><volume>14</volume><issue>4</issue><spage>2034</spage><epage>2041</epage><pages>2034-2041</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>The time-dependent Hartree–Fock (TDHF) and time-dependent density functional theory (TDDFT) equations allow one to probe electronic resonances of a system quickly and inexpensively. However, the iterative solution of the eigenvalue problem can be challenging or impossible to converge, using standard methods such as the Davidson algorithm for spectrally dense regions in the interior of the spectrum, as are common in X-ray absorption spectroscopy (XAS). More robust solvers, such as the generalized preconditioned locally harmonic residual (GPLHR) method, can alleviate this problem, but at the expense of higher average computational cost. A hybrid method is proposed which adapts to the problem in order to maximize computational performance while providing the superior convergence of GPLHR. In addition, a modification to the GPLHR algorithm is proposed to adaptively choose the shift parameter to enforce a convergence of states above a predefined energy threshold.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29547271</pmid><doi>10.1021/acs.jctc.8b00141</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7341-6240</orcidid><orcidid>https://orcid.org/0000-0002-3840-484X</orcidid><orcidid>https://orcid.org/0000-0003-2735-3706</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2018-04, Vol.14 (4), p.2034-2041
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_2014954948
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Algorithms
Convergence
Density functional theory
Iterative methods
Iterative solution
Solvers
Time dependence
title A Well-Tempered Hybrid Method for Solving Challenging Time-Dependent Density Functional Theory (TDDFT) Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Well-Tempered%20Hybrid%20Method%20for%20Solving%20Challenging%20Time-Dependent%20Density%20Functional%20Theory%20(TDDFT)%20Systems&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Kasper,%20Joseph%20M&rft.date=2018-04-10&rft.volume=14&rft.issue=4&rft.spage=2034&rft.epage=2041&rft.pages=2034-2041&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.8b00141&rft_dat=%3Cproquest_cross%3E2014954948%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a364t-f1b50cdd3221450ba14ef50ae993bd966c5651c53e673cb0311e68c117ba34313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2043260100&rft_id=info:pmid/29547271&rfr_iscdi=true