Loading…
A Well-Tempered Hybrid Method for Solving Challenging Time-Dependent Density Functional Theory (TDDFT) Systems
The time-dependent Hartree–Fock (TDHF) and time-dependent density functional theory (TDDFT) equations allow one to probe electronic resonances of a system quickly and inexpensively. However, the iterative solution of the eigenvalue problem can be challenging or impossible to converge, using standard...
Saved in:
Published in: | Journal of chemical theory and computation 2018-04, Vol.14 (4), p.2034-2041 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a364t-f1b50cdd3221450ba14ef50ae993bd966c5651c53e673cb0311e68c117ba34313 |
---|---|
cites | cdi_FETCH-LOGICAL-a364t-f1b50cdd3221450ba14ef50ae993bd966c5651c53e673cb0311e68c117ba34313 |
container_end_page | 2041 |
container_issue | 4 |
container_start_page | 2034 |
container_title | Journal of chemical theory and computation |
container_volume | 14 |
creator | Kasper, Joseph M Williams-Young, David B Vecharynski, Eugene Yang, Chao Li, Xiaosong |
description | The time-dependent Hartree–Fock (TDHF) and time-dependent density functional theory (TDDFT) equations allow one to probe electronic resonances of a system quickly and inexpensively. However, the iterative solution of the eigenvalue problem can be challenging or impossible to converge, using standard methods such as the Davidson algorithm for spectrally dense regions in the interior of the spectrum, as are common in X-ray absorption spectroscopy (XAS). More robust solvers, such as the generalized preconditioned locally harmonic residual (GPLHR) method, can alleviate this problem, but at the expense of higher average computational cost. A hybrid method is proposed which adapts to the problem in order to maximize computational performance while providing the superior convergence of GPLHR. In addition, a modification to the GPLHR algorithm is proposed to adaptively choose the shift parameter to enforce a convergence of states above a predefined energy threshold. |
doi_str_mv | 10.1021/acs.jctc.8b00141 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2014954948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014954948</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-f1b50cdd3221450ba14ef50ae993bd966c5651c53e673cb0311e68c117ba34313</originalsourceid><addsrcrecordid>eNp1kUFP4zAQha0VaGHL3ve0ssSFlUjx2I7bHFG7BSQQB7LaY-Q4E5oqsbt2slL-PS4tHJA4zRy-90bzHiE_gE2BcbjSJkw3pjfTeckYSPhCTiGVWZIpro7ed5ifkG8hbBgTQnLxlZzwLJUzPoNTYq_pX2zbJMduix4rejuWvqnoA_ZrV9Haefrk2v-NfaaLtW5btM-7PW86TJa4RVuh7ekSbWj6ka4Ga_rGWd3SfI3Oj_QiXy5X-S_6NIYeu3BGjmvdBvx-mBPyZ_U7X9wm9483d4vr-0QLJfukhjJlpqoE5yBTVmqQWKdMY5aJssqUMqlKwaQC1UyYkgkAVHMDMCu1kALEhFzsfbfe_Rsw9EXXBBMf1RbdEAoe04oZZHIe0fMP6MYNPr6wo6TgikEMbkLYnjLeheCxLra-6bQfC2DFrosidlHsuigOXUTJz4PxUHZYvQvewo_A5R54lb4d_dTvBYypk5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2043260100</pqid></control><display><type>article</type><title>A Well-Tempered Hybrid Method for Solving Challenging Time-Dependent Density Functional Theory (TDDFT) Systems</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Kasper, Joseph M ; Williams-Young, David B ; Vecharynski, Eugene ; Yang, Chao ; Li, Xiaosong</creator><creatorcontrib>Kasper, Joseph M ; Williams-Young, David B ; Vecharynski, Eugene ; Yang, Chao ; Li, Xiaosong</creatorcontrib><description>The time-dependent Hartree–Fock (TDHF) and time-dependent density functional theory (TDDFT) equations allow one to probe electronic resonances of a system quickly and inexpensively. However, the iterative solution of the eigenvalue problem can be challenging or impossible to converge, using standard methods such as the Davidson algorithm for spectrally dense regions in the interior of the spectrum, as are common in X-ray absorption spectroscopy (XAS). More robust solvers, such as the generalized preconditioned locally harmonic residual (GPLHR) method, can alleviate this problem, but at the expense of higher average computational cost. A hybrid method is proposed which adapts to the problem in order to maximize computational performance while providing the superior convergence of GPLHR. In addition, a modification to the GPLHR algorithm is proposed to adaptively choose the shift parameter to enforce a convergence of states above a predefined energy threshold.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.8b00141</identifier><identifier>PMID: 29547271</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Convergence ; Density functional theory ; Iterative methods ; Iterative solution ; Solvers ; Time dependence</subject><ispartof>Journal of chemical theory and computation, 2018-04, Vol.14 (4), p.2034-2041</ispartof><rights>Copyright American Chemical Society Apr 10, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-f1b50cdd3221450ba14ef50ae993bd966c5651c53e673cb0311e68c117ba34313</citedby><cites>FETCH-LOGICAL-a364t-f1b50cdd3221450ba14ef50ae993bd966c5651c53e673cb0311e68c117ba34313</cites><orcidid>0000-0001-7341-6240 ; 0000-0002-3840-484X ; 0000-0003-2735-3706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29547271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kasper, Joseph M</creatorcontrib><creatorcontrib>Williams-Young, David B</creatorcontrib><creatorcontrib>Vecharynski, Eugene</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Li, Xiaosong</creatorcontrib><title>A Well-Tempered Hybrid Method for Solving Challenging Time-Dependent Density Functional Theory (TDDFT) Systems</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>The time-dependent Hartree–Fock (TDHF) and time-dependent density functional theory (TDDFT) equations allow one to probe electronic resonances of a system quickly and inexpensively. However, the iterative solution of the eigenvalue problem can be challenging or impossible to converge, using standard methods such as the Davidson algorithm for spectrally dense regions in the interior of the spectrum, as are common in X-ray absorption spectroscopy (XAS). More robust solvers, such as the generalized preconditioned locally harmonic residual (GPLHR) method, can alleviate this problem, but at the expense of higher average computational cost. A hybrid method is proposed which adapts to the problem in order to maximize computational performance while providing the superior convergence of GPLHR. In addition, a modification to the GPLHR algorithm is proposed to adaptively choose the shift parameter to enforce a convergence of states above a predefined energy threshold.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Density functional theory</subject><subject>Iterative methods</subject><subject>Iterative solution</subject><subject>Solvers</subject><subject>Time dependence</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kUFP4zAQha0VaGHL3ve0ssSFlUjx2I7bHFG7BSQQB7LaY-Q4E5oqsbt2slL-PS4tHJA4zRy-90bzHiE_gE2BcbjSJkw3pjfTeckYSPhCTiGVWZIpro7ed5ifkG8hbBgTQnLxlZzwLJUzPoNTYq_pX2zbJMduix4rejuWvqnoA_ZrV9Haefrk2v-NfaaLtW5btM-7PW86TJa4RVuh7ekSbWj6ka4Ga_rGWd3SfI3Oj_QiXy5X-S_6NIYeu3BGjmvdBvx-mBPyZ_U7X9wm9483d4vr-0QLJfukhjJlpqoE5yBTVmqQWKdMY5aJssqUMqlKwaQC1UyYkgkAVHMDMCu1kALEhFzsfbfe_Rsw9EXXBBMf1RbdEAoe04oZZHIe0fMP6MYNPr6wo6TgikEMbkLYnjLeheCxLra-6bQfC2DFrosidlHsuigOXUTJz4PxUHZYvQvewo_A5R54lb4d_dTvBYypk5w</recordid><startdate>20180410</startdate><enddate>20180410</enddate><creator>Kasper, Joseph M</creator><creator>Williams-Young, David B</creator><creator>Vecharynski, Eugene</creator><creator>Yang, Chao</creator><creator>Li, Xiaosong</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7341-6240</orcidid><orcidid>https://orcid.org/0000-0002-3840-484X</orcidid><orcidid>https://orcid.org/0000-0003-2735-3706</orcidid></search><sort><creationdate>20180410</creationdate><title>A Well-Tempered Hybrid Method for Solving Challenging Time-Dependent Density Functional Theory (TDDFT) Systems</title><author>Kasper, Joseph M ; Williams-Young, David B ; Vecharynski, Eugene ; Yang, Chao ; Li, Xiaosong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-f1b50cdd3221450ba14ef50ae993bd966c5651c53e673cb0311e68c117ba34313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Density functional theory</topic><topic>Iterative methods</topic><topic>Iterative solution</topic><topic>Solvers</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasper, Joseph M</creatorcontrib><creatorcontrib>Williams-Young, David B</creatorcontrib><creatorcontrib>Vecharynski, Eugene</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Li, Xiaosong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasper, Joseph M</au><au>Williams-Young, David B</au><au>Vecharynski, Eugene</au><au>Yang, Chao</au><au>Li, Xiaosong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Well-Tempered Hybrid Method for Solving Challenging Time-Dependent Density Functional Theory (TDDFT) Systems</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2018-04-10</date><risdate>2018</risdate><volume>14</volume><issue>4</issue><spage>2034</spage><epage>2041</epage><pages>2034-2041</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>The time-dependent Hartree–Fock (TDHF) and time-dependent density functional theory (TDDFT) equations allow one to probe electronic resonances of a system quickly and inexpensively. However, the iterative solution of the eigenvalue problem can be challenging or impossible to converge, using standard methods such as the Davidson algorithm for spectrally dense regions in the interior of the spectrum, as are common in X-ray absorption spectroscopy (XAS). More robust solvers, such as the generalized preconditioned locally harmonic residual (GPLHR) method, can alleviate this problem, but at the expense of higher average computational cost. A hybrid method is proposed which adapts to the problem in order to maximize computational performance while providing the superior convergence of GPLHR. In addition, a modification to the GPLHR algorithm is proposed to adaptively choose the shift parameter to enforce a convergence of states above a predefined energy threshold.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29547271</pmid><doi>10.1021/acs.jctc.8b00141</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7341-6240</orcidid><orcidid>https://orcid.org/0000-0002-3840-484X</orcidid><orcidid>https://orcid.org/0000-0003-2735-3706</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2018-04, Vol.14 (4), p.2034-2041 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_2014954948 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Algorithms Convergence Density functional theory Iterative methods Iterative solution Solvers Time dependence |
title | A Well-Tempered Hybrid Method for Solving Challenging Time-Dependent Density Functional Theory (TDDFT) Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Well-Tempered%20Hybrid%20Method%20for%20Solving%20Challenging%20Time-Dependent%20Density%20Functional%20Theory%20(TDDFT)%20Systems&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Kasper,%20Joseph%20M&rft.date=2018-04-10&rft.volume=14&rft.issue=4&rft.spage=2034&rft.epage=2041&rft.pages=2034-2041&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.8b00141&rft_dat=%3Cproquest_cross%3E2014954948%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a364t-f1b50cdd3221450ba14ef50ae993bd966c5651c53e673cb0311e68c117ba34313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2043260100&rft_id=info:pmid/29547271&rfr_iscdi=true |