Loading…
Microbial community dynamics of a blue-veined raw milk cheese from the United Kingdom
A commercial blue-veined cheese made from unpasteurized milk was examined by conventional culturing and PCR denaturing gradient gel electrophoresis analysis of the bacterial community 16S rRNA genes using 3 primer sets, V3, V4V5, and V6V8. Genomic DNA for amplification was extracted directly from ra...
Saved in:
Published in: | Journal of dairy science 2018-06, Vol.101 (6), p.4923-4935 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A commercial blue-veined cheese made from unpasteurized milk was examined by conventional culturing and PCR denaturing gradient gel electrophoresis analysis of the bacterial community 16S rRNA genes using 3 primer sets, V3, V4V5, and V6V8. Genomic DNA for amplification was extracted directly from raw milk, starter culture, cheese at different stages of production, fully ripened cheese, and from the cultured cells grown on various media. The outer rind was sampled separately from the inner white core and blue veins. A diverse microbiota containing Lactococcus lactis ssp. lactis, Lactobacillus plantarum, Lactobacillus curvatus, Staphylococcus gallinarum, Staphylococcus devriesei, Microbacterium sp., Sphingobacterium sp., Mycetocola sp., Brevundimonas sp., Enterococcus faecalis, Proteus sp., and Kocuria sp. was detected in the raw milk using culturing methods, but only Lactococcus lactis ssp. lactis, Lactobacillus plantarum, and Enterococcus faecalis survived to the final cheese and were detected both in the core and the rind. Using PCR denaturing gradient gel electrophoresis analysis of the cheese process samples, Staphylococcus equorum and Enterococcus durans were found in the rind of prepiercing samples but not in the core and veins; after piercing, these species were found in all parts of the cheese but survived only in the rind when the cheese was fully ripened. Brevibacterium sp., Halomonas sp., Acinetobacter sp., Alkalibacterium sp., and Corynebacterium casei were identified only by PCR denaturing gradient gel electrophoresis and not cultured from the samples. Brevibacterium sp. was initially identified in the cheese postpiercing (core and veins), Halomonas sp. was found in the matured cheese (rind), and Acinetobacter sp., Alkalibacterium sp., and Corynebacterium casei were also found in the prepiercing samples (rind) and then found through the subsequent process stages. The work suggests that in this raw milk cheese, a limited community from the milk survive to the final cheese, with salt addition and handling contributing to the final cheese consortium. |
---|---|
ISSN: | 0022-0302 1525-3198 |
DOI: | 10.3168/jds.2017-14104 |