Loading…
Development of a late Viséan (Mississippian) mixed carbonate/siliciclastic platform in the Guadalmellato Valley (southwestern Spain)
The Peñas Rubias Syncline (southwestern Spain) exposes a well-preserved shallow-water platform succession containing a spectrum of facies corresponding to inner platform intertidal to supratidal environments, across to deeper-water middle to outer platform environments. Nineteen microfacies are reco...
Saved in:
Published in: | Sedimentary geology 2006-01, Vol.183 (3), p.269-295 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Peñas Rubias Syncline (southwestern Spain) exposes a well-preserved shallow-water platform succession containing a spectrum of facies corresponding to inner platform intertidal to supratidal environments, across to deeper-water middle to outer platform environments. Nineteen microfacies are recognized, which are grouped into seven facies association corresponding to: siliciclastic deltaic bars, mixed carbonate/siliciclastic shoals, carbonate mud mound boundstones, background platform carbonates, background platform siliciclastics, mixed tempestites and deep-water siliciclastic shales and sandstones. The age of the succession was determined mainly by foraminiferans and calcareous algae, which permit the succession to be assigned to the late Brigantian (latest Viséan). This upper Brigantian platform is the only record of sedimentation of this age in the region, and thus is key for interpreting the sedimentary and tectonic evolution of the Carboniferous rocks in Sierra Morena. Biotic and sedimentological features were analyzed in order to assess the controls on the sedimentation. Several factors have influenced sedimentological changes: turbidity, subsidence, siliciclastic discharges, storms and bioturbation. The siliciclastic discharges exerted a considerable control on the basal deposits, mostly in their percentage of quartz sand grains and as microconglomerates. However, they did not develop as large deltaic deposits, and their influence can be considered as virtually negligible in regards to the remaining part of the succession. Turbidity, as a result of higher percentage of silt and mud in suspension, seems to be the main factor controlling the change between the older intertidal deposits in the inner platform to the younger subtidal deposits of the middle and outer platform. As a result of the increase of the mud and silt in suspension, facies changed first to marlstones and nodular argillaceous limestones, and second, to predominantly calcimicrobial boundstones and shales in the uppermost part of the carbonate succession, as well as showing a marked change from photic-controlled benthic faunal and microfloral assemblages to assemblages more tolerant or better adapted to muddier dysphotic substrates. Bioturbation is also interpreted as one of the main controls influencing the different type of boundstones in the middle platform, permitting the vertical growth of dome-shaped mud-mounds or as sheet-like deposits. Storm influences seem to have exerted |
---|---|
ISSN: | 0037-0738 1879-0968 |
DOI: | 10.1016/j.sedgeo.2005.09.018 |