Loading…
Nanoparticles individualities in both Newtonian and Casson fluid models by way of stratified media: A numerical analysis
. The current paper contains the simultaneous analysis of both Newtonian and non-Newtonian nanofluid models. The fluid flow is achieved by considering the no-slip condition subject to a stretched cylindrical surface. The flow regime manifests with pertinent physical effects, namely temperature strat...
Saved in:
Published in: | The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2018-03, Vol.41 (3), p.37-10, Article 37 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-5f33eed1a8f4928188a2aadba0e3041c030c63140fe8429b4b1d2ae7d61582283 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-5f33eed1a8f4928188a2aadba0e3041c030c63140fe8429b4b1d2ae7d61582283 |
container_end_page | 10 |
container_issue | 3 |
container_start_page | 37 |
container_title | The European physical journal. E, Soft matter and biological physics |
container_volume | 41 |
creator | Ur Rehman, Khalil Ul Saba, Noor Malik, M. Y. Zehra, Iffat |
description | .
The current paper contains the simultaneous analysis of both Newtonian and non-Newtonian nanofluid models. The fluid flow is achieved by considering the no-slip condition subject to a stretched cylindrical surface. The flow regime manifests with pertinent physical effects, namely temperature stratification, concentration stratification, thermal radiation, heat generation, magnetic field, dual convection and chemical reaction. The strength of fluid temperature and nanoparticles concentration adjacent to an inclined cylindrical surface is assumed to be higher than the ambient flow field. A mathematical model is developed in terms of differential equations. A self-constructed numerical algorithm is executed to report the numerical solution. The resultant annotations are illustrated through both tables and graphs. It is noticed that the Casson fluid shows significant variations with respect to the involved physical parameters as compared to the Newtonian fluid model. Moreover, the analysis is certified through comparison with the existing values in a limiting sense.
Graphical abstract |
doi_str_mv | 10.1140/epje/i2018-11641-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2017059129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2017059129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-5f33eed1a8f4928188a2aadba0e3041c030c63140fe8429b4b1d2ae7d61582283</originalsourceid><addsrcrecordid>eNp9kUtP3DAUha2qqEyhf4AFstRNNwE_kozDbjTqA2kEG5DYWTfxDXjksQc7KZ1_X8-jVGLByrbud-69PoeQM84uOC_ZJa6XeGkF46rgvC55oT6QCReNKFRTPXx8vZf8mHxOackYyzL5iRyLpqrLason5M8N-LCGONjOYaLWG_vbmhGcHezuTdswPNEbfBmCt-ApeEPnkFLwtHejNXQVDLpE2w19gQ0NPU1DhMH2FnMNjYUrOqN-XGG0HbisB7dJNp2Sox5cwi-H84Tc__h-N_9VLG5_Xs9ni6KT02ooql5KRMNB9WUjFFcKBIBpgaFkJe-YZF0t87d6VKVo2rLlRgBOTc0rJYSSJ-Tbvu86hucR06BXNnXoHHgMY9LZvimrmmxVRr--QZdhjHnfHVVXjWSKZUrsqS6GlCL2eh3tCuJGc6a3uehtLnqXi97lordbnB9aj2025VXyL4gMyD2Qcsk_Yvw_-522fwFNe5tl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2016593080</pqid></control><display><type>article</type><title>Nanoparticles individualities in both Newtonian and Casson fluid models by way of stratified media: A numerical analysis</title><source>Springer Nature</source><creator>Ur Rehman, Khalil ; Ul Saba, Noor ; Malik, M. Y. ; Zehra, Iffat</creator><creatorcontrib>Ur Rehman, Khalil ; Ul Saba, Noor ; Malik, M. Y. ; Zehra, Iffat</creatorcontrib><description>.
The current paper contains the simultaneous analysis of both Newtonian and non-Newtonian nanofluid models. The fluid flow is achieved by considering the no-slip condition subject to a stretched cylindrical surface. The flow regime manifests with pertinent physical effects, namely temperature stratification, concentration stratification, thermal radiation, heat generation, magnetic field, dual convection and chemical reaction. The strength of fluid temperature and nanoparticles concentration adjacent to an inclined cylindrical surface is assumed to be higher than the ambient flow field. A mathematical model is developed in terms of differential equations. A self-constructed numerical algorithm is executed to report the numerical solution. The resultant annotations are illustrated through both tables and graphs. It is noticed that the Casson fluid shows significant variations with respect to the involved physical parameters as compared to the Newtonian fluid model. Moreover, the analysis is certified through comparison with the existing values in a limiting sense.
Graphical abstract</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/i2018-11641-8</identifier><identifier>PMID: 29564571</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Annotations ; Biological and Medical Physics ; Biophysics ; Chemical reactions ; Complex Fluids and Microfluidics ; Complex Systems ; Computational fluid dynamics ; Condensed matter physics ; Differential equations ; Fluid flow ; Heat generation ; Mathematical models ; Nanofluids ; Nanoparticles ; Nanotechnology ; Newtonian fluids ; Numerical analysis ; Physical properties ; Physics ; Physics and Astronomy ; Polymer Sciences ; Regular Article ; Soft and Granular Matter ; Stratification ; Surfaces and Interfaces ; Thermal radiation ; Thin Films</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2018-03, Vol.41 (3), p.37-10, Article 37</ispartof><rights>EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-5f33eed1a8f4928188a2aadba0e3041c030c63140fe8429b4b1d2ae7d61582283</citedby><cites>FETCH-LOGICAL-c375t-5f33eed1a8f4928188a2aadba0e3041c030c63140fe8429b4b1d2ae7d61582283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29564571$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ur Rehman, Khalil</creatorcontrib><creatorcontrib>Ul Saba, Noor</creatorcontrib><creatorcontrib>Malik, M. Y.</creatorcontrib><creatorcontrib>Zehra, Iffat</creatorcontrib><title>Nanoparticles individualities in both Newtonian and Casson fluid models by way of stratified media: A numerical analysis</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>.
The current paper contains the simultaneous analysis of both Newtonian and non-Newtonian nanofluid models. The fluid flow is achieved by considering the no-slip condition subject to a stretched cylindrical surface. The flow regime manifests with pertinent physical effects, namely temperature stratification, concentration stratification, thermal radiation, heat generation, magnetic field, dual convection and chemical reaction. The strength of fluid temperature and nanoparticles concentration adjacent to an inclined cylindrical surface is assumed to be higher than the ambient flow field. A mathematical model is developed in terms of differential equations. A self-constructed numerical algorithm is executed to report the numerical solution. The resultant annotations are illustrated through both tables and graphs. It is noticed that the Casson fluid shows significant variations with respect to the involved physical parameters as compared to the Newtonian fluid model. Moreover, the analysis is certified through comparison with the existing values in a limiting sense.
Graphical abstract</description><subject>Annotations</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Chemical reactions</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Computational fluid dynamics</subject><subject>Condensed matter physics</subject><subject>Differential equations</subject><subject>Fluid flow</subject><subject>Heat generation</subject><subject>Mathematical models</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Newtonian fluids</subject><subject>Numerical analysis</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer Sciences</subject><subject>Regular Article</subject><subject>Soft and Granular Matter</subject><subject>Stratification</subject><subject>Surfaces and Interfaces</subject><subject>Thermal radiation</subject><subject>Thin Films</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kUtP3DAUha2qqEyhf4AFstRNNwE_kozDbjTqA2kEG5DYWTfxDXjksQc7KZ1_X8-jVGLByrbud-69PoeQM84uOC_ZJa6XeGkF46rgvC55oT6QCReNKFRTPXx8vZf8mHxOackYyzL5iRyLpqrLason5M8N-LCGONjOYaLWG_vbmhGcHezuTdswPNEbfBmCt-ApeEPnkFLwtHejNXQVDLpE2w19gQ0NPU1DhMH2FnMNjYUrOqN-XGG0HbisB7dJNp2Sox5cwi-H84Tc__h-N_9VLG5_Xs9ni6KT02ooql5KRMNB9WUjFFcKBIBpgaFkJe-YZF0t87d6VKVo2rLlRgBOTc0rJYSSJ-Tbvu86hucR06BXNnXoHHgMY9LZvimrmmxVRr--QZdhjHnfHVVXjWSKZUrsqS6GlCL2eh3tCuJGc6a3uehtLnqXi97lordbnB9aj2025VXyL4gMyD2Qcsk_Yvw_-522fwFNe5tl</recordid><startdate>20180322</startdate><enddate>20180322</enddate><creator>Ur Rehman, Khalil</creator><creator>Ul Saba, Noor</creator><creator>Malik, M. Y.</creator><creator>Zehra, Iffat</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180322</creationdate><title>Nanoparticles individualities in both Newtonian and Casson fluid models by way of stratified media: A numerical analysis</title><author>Ur Rehman, Khalil ; Ul Saba, Noor ; Malik, M. Y. ; Zehra, Iffat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-5f33eed1a8f4928188a2aadba0e3041c030c63140fe8429b4b1d2ae7d61582283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Annotations</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Chemical reactions</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Computational fluid dynamics</topic><topic>Condensed matter physics</topic><topic>Differential equations</topic><topic>Fluid flow</topic><topic>Heat generation</topic><topic>Mathematical models</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Newtonian fluids</topic><topic>Numerical analysis</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer Sciences</topic><topic>Regular Article</topic><topic>Soft and Granular Matter</topic><topic>Stratification</topic><topic>Surfaces and Interfaces</topic><topic>Thermal radiation</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ur Rehman, Khalil</creatorcontrib><creatorcontrib>Ul Saba, Noor</creatorcontrib><creatorcontrib>Malik, M. Y.</creatorcontrib><creatorcontrib>Zehra, Iffat</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ur Rehman, Khalil</au><au>Ul Saba, Noor</au><au>Malik, M. Y.</au><au>Zehra, Iffat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoparticles individualities in both Newtonian and Casson fluid models by way of stratified media: A numerical analysis</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2018-03-22</date><risdate>2018</risdate><volume>41</volume><issue>3</issue><spage>37</spage><epage>10</epage><pages>37-10</pages><artnum>37</artnum><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>.
The current paper contains the simultaneous analysis of both Newtonian and non-Newtonian nanofluid models. The fluid flow is achieved by considering the no-slip condition subject to a stretched cylindrical surface. The flow regime manifests with pertinent physical effects, namely temperature stratification, concentration stratification, thermal radiation, heat generation, magnetic field, dual convection and chemical reaction. The strength of fluid temperature and nanoparticles concentration adjacent to an inclined cylindrical surface is assumed to be higher than the ambient flow field. A mathematical model is developed in terms of differential equations. A self-constructed numerical algorithm is executed to report the numerical solution. The resultant annotations are illustrated through both tables and graphs. It is noticed that the Casson fluid shows significant variations with respect to the involved physical parameters as compared to the Newtonian fluid model. Moreover, the analysis is certified through comparison with the existing values in a limiting sense.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29564571</pmid><doi>10.1140/epje/i2018-11641-8</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1292-8941 |
ispartof | The European physical journal. E, Soft matter and biological physics, 2018-03, Vol.41 (3), p.37-10, Article 37 |
issn | 1292-8941 1292-895X |
language | eng |
recordid | cdi_proquest_miscellaneous_2017059129 |
source | Springer Nature |
subjects | Annotations Biological and Medical Physics Biophysics Chemical reactions Complex Fluids and Microfluidics Complex Systems Computational fluid dynamics Condensed matter physics Differential equations Fluid flow Heat generation Mathematical models Nanofluids Nanoparticles Nanotechnology Newtonian fluids Numerical analysis Physical properties Physics Physics and Astronomy Polymer Sciences Regular Article Soft and Granular Matter Stratification Surfaces and Interfaces Thermal radiation Thin Films |
title | Nanoparticles individualities in both Newtonian and Casson fluid models by way of stratified media: A numerical analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoparticles%20individualities%20in%20both%20Newtonian%20and%20Casson%20fluid%20models%20by%20way%20of%20stratified%20media:%20A%20numerical%20analysis&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Ur%20Rehman,%20Khalil&rft.date=2018-03-22&rft.volume=41&rft.issue=3&rft.spage=37&rft.epage=10&rft.pages=37-10&rft.artnum=37&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/i2018-11641-8&rft_dat=%3Cproquest_cross%3E2017059129%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-5f33eed1a8f4928188a2aadba0e3041c030c63140fe8429b4b1d2ae7d61582283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2016593080&rft_id=info:pmid/29564571&rfr_iscdi=true |