Loading…

Nanoparticles individualities in both Newtonian and Casson fluid models by way of stratified media: A numerical analysis

. The current paper contains the simultaneous analysis of both Newtonian and non-Newtonian nanofluid models. The fluid flow is achieved by considering the no-slip condition subject to a stretched cylindrical surface. The flow regime manifests with pertinent physical effects, namely temperature strat...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2018-03, Vol.41 (3), p.37-10, Article 37
Main Authors: Ur Rehman, Khalil, Ul Saba, Noor, Malik, M. Y., Zehra, Iffat
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-5f33eed1a8f4928188a2aadba0e3041c030c63140fe8429b4b1d2ae7d61582283
cites cdi_FETCH-LOGICAL-c375t-5f33eed1a8f4928188a2aadba0e3041c030c63140fe8429b4b1d2ae7d61582283
container_end_page 10
container_issue 3
container_start_page 37
container_title The European physical journal. E, Soft matter and biological physics
container_volume 41
creator Ur Rehman, Khalil
Ul Saba, Noor
Malik, M. Y.
Zehra, Iffat
description . The current paper contains the simultaneous analysis of both Newtonian and non-Newtonian nanofluid models. The fluid flow is achieved by considering the no-slip condition subject to a stretched cylindrical surface. The flow regime manifests with pertinent physical effects, namely temperature stratification, concentration stratification, thermal radiation, heat generation, magnetic field, dual convection and chemical reaction. The strength of fluid temperature and nanoparticles concentration adjacent to an inclined cylindrical surface is assumed to be higher than the ambient flow field. A mathematical model is developed in terms of differential equations. A self-constructed numerical algorithm is executed to report the numerical solution. The resultant annotations are illustrated through both tables and graphs. It is noticed that the Casson fluid shows significant variations with respect to the involved physical parameters as compared to the Newtonian fluid model. Moreover, the analysis is certified through comparison with the existing values in a limiting sense. Graphical abstract
doi_str_mv 10.1140/epje/i2018-11641-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2017059129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2017059129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-5f33eed1a8f4928188a2aadba0e3041c030c63140fe8429b4b1d2ae7d61582283</originalsourceid><addsrcrecordid>eNp9kUtP3DAUha2qqEyhf4AFstRNNwE_kozDbjTqA2kEG5DYWTfxDXjksQc7KZ1_X8-jVGLByrbud-69PoeQM84uOC_ZJa6XeGkF46rgvC55oT6QCReNKFRTPXx8vZf8mHxOackYyzL5iRyLpqrLason5M8N-LCGONjOYaLWG_vbmhGcHezuTdswPNEbfBmCt-ApeEPnkFLwtHejNXQVDLpE2w19gQ0NPU1DhMH2FnMNjYUrOqN-XGG0HbisB7dJNp2Sox5cwi-H84Tc__h-N_9VLG5_Xs9ni6KT02ooql5KRMNB9WUjFFcKBIBpgaFkJe-YZF0t87d6VKVo2rLlRgBOTc0rJYSSJ-Tbvu86hucR06BXNnXoHHgMY9LZvimrmmxVRr--QZdhjHnfHVVXjWSKZUrsqS6GlCL2eh3tCuJGc6a3uehtLnqXi97lordbnB9aj2025VXyL4gMyD2Qcsk_Yvw_-522fwFNe5tl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2016593080</pqid></control><display><type>article</type><title>Nanoparticles individualities in both Newtonian and Casson fluid models by way of stratified media: A numerical analysis</title><source>Springer Nature</source><creator>Ur Rehman, Khalil ; Ul Saba, Noor ; Malik, M. Y. ; Zehra, Iffat</creator><creatorcontrib>Ur Rehman, Khalil ; Ul Saba, Noor ; Malik, M. Y. ; Zehra, Iffat</creatorcontrib><description>. The current paper contains the simultaneous analysis of both Newtonian and non-Newtonian nanofluid models. The fluid flow is achieved by considering the no-slip condition subject to a stretched cylindrical surface. The flow regime manifests with pertinent physical effects, namely temperature stratification, concentration stratification, thermal radiation, heat generation, magnetic field, dual convection and chemical reaction. The strength of fluid temperature and nanoparticles concentration adjacent to an inclined cylindrical surface is assumed to be higher than the ambient flow field. A mathematical model is developed in terms of differential equations. A self-constructed numerical algorithm is executed to report the numerical solution. The resultant annotations are illustrated through both tables and graphs. It is noticed that the Casson fluid shows significant variations with respect to the involved physical parameters as compared to the Newtonian fluid model. Moreover, the analysis is certified through comparison with the existing values in a limiting sense. Graphical abstract</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/i2018-11641-8</identifier><identifier>PMID: 29564571</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Annotations ; Biological and Medical Physics ; Biophysics ; Chemical reactions ; Complex Fluids and Microfluidics ; Complex Systems ; Computational fluid dynamics ; Condensed matter physics ; Differential equations ; Fluid flow ; Heat generation ; Mathematical models ; Nanofluids ; Nanoparticles ; Nanotechnology ; Newtonian fluids ; Numerical analysis ; Physical properties ; Physics ; Physics and Astronomy ; Polymer Sciences ; Regular Article ; Soft and Granular Matter ; Stratification ; Surfaces and Interfaces ; Thermal radiation ; Thin Films</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2018-03, Vol.41 (3), p.37-10, Article 37</ispartof><rights>EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-5f33eed1a8f4928188a2aadba0e3041c030c63140fe8429b4b1d2ae7d61582283</citedby><cites>FETCH-LOGICAL-c375t-5f33eed1a8f4928188a2aadba0e3041c030c63140fe8429b4b1d2ae7d61582283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29564571$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ur Rehman, Khalil</creatorcontrib><creatorcontrib>Ul Saba, Noor</creatorcontrib><creatorcontrib>Malik, M. Y.</creatorcontrib><creatorcontrib>Zehra, Iffat</creatorcontrib><title>Nanoparticles individualities in both Newtonian and Casson fluid models by way of stratified media: A numerical analysis</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>. The current paper contains the simultaneous analysis of both Newtonian and non-Newtonian nanofluid models. The fluid flow is achieved by considering the no-slip condition subject to a stretched cylindrical surface. The flow regime manifests with pertinent physical effects, namely temperature stratification, concentration stratification, thermal radiation, heat generation, magnetic field, dual convection and chemical reaction. The strength of fluid temperature and nanoparticles concentration adjacent to an inclined cylindrical surface is assumed to be higher than the ambient flow field. A mathematical model is developed in terms of differential equations. A self-constructed numerical algorithm is executed to report the numerical solution. The resultant annotations are illustrated through both tables and graphs. It is noticed that the Casson fluid shows significant variations with respect to the involved physical parameters as compared to the Newtonian fluid model. Moreover, the analysis is certified through comparison with the existing values in a limiting sense. Graphical abstract</description><subject>Annotations</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Chemical reactions</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Computational fluid dynamics</subject><subject>Condensed matter physics</subject><subject>Differential equations</subject><subject>Fluid flow</subject><subject>Heat generation</subject><subject>Mathematical models</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Newtonian fluids</subject><subject>Numerical analysis</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer Sciences</subject><subject>Regular Article</subject><subject>Soft and Granular Matter</subject><subject>Stratification</subject><subject>Surfaces and Interfaces</subject><subject>Thermal radiation</subject><subject>Thin Films</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kUtP3DAUha2qqEyhf4AFstRNNwE_kozDbjTqA2kEG5DYWTfxDXjksQc7KZ1_X8-jVGLByrbud-69PoeQM84uOC_ZJa6XeGkF46rgvC55oT6QCReNKFRTPXx8vZf8mHxOackYyzL5iRyLpqrLason5M8N-LCGONjOYaLWG_vbmhGcHezuTdswPNEbfBmCt-ApeEPnkFLwtHejNXQVDLpE2w19gQ0NPU1DhMH2FnMNjYUrOqN-XGG0HbisB7dJNp2Sox5cwi-H84Tc__h-N_9VLG5_Xs9ni6KT02ooql5KRMNB9WUjFFcKBIBpgaFkJe-YZF0t87d6VKVo2rLlRgBOTc0rJYSSJ-Tbvu86hucR06BXNnXoHHgMY9LZvimrmmxVRr--QZdhjHnfHVVXjWSKZUrsqS6GlCL2eh3tCuJGc6a3uehtLnqXi97lordbnB9aj2025VXyL4gMyD2Qcsk_Yvw_-522fwFNe5tl</recordid><startdate>20180322</startdate><enddate>20180322</enddate><creator>Ur Rehman, Khalil</creator><creator>Ul Saba, Noor</creator><creator>Malik, M. Y.</creator><creator>Zehra, Iffat</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180322</creationdate><title>Nanoparticles individualities in both Newtonian and Casson fluid models by way of stratified media: A numerical analysis</title><author>Ur Rehman, Khalil ; Ul Saba, Noor ; Malik, M. Y. ; Zehra, Iffat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-5f33eed1a8f4928188a2aadba0e3041c030c63140fe8429b4b1d2ae7d61582283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Annotations</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Chemical reactions</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Computational fluid dynamics</topic><topic>Condensed matter physics</topic><topic>Differential equations</topic><topic>Fluid flow</topic><topic>Heat generation</topic><topic>Mathematical models</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Newtonian fluids</topic><topic>Numerical analysis</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer Sciences</topic><topic>Regular Article</topic><topic>Soft and Granular Matter</topic><topic>Stratification</topic><topic>Surfaces and Interfaces</topic><topic>Thermal radiation</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ur Rehman, Khalil</creatorcontrib><creatorcontrib>Ul Saba, Noor</creatorcontrib><creatorcontrib>Malik, M. Y.</creatorcontrib><creatorcontrib>Zehra, Iffat</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ur Rehman, Khalil</au><au>Ul Saba, Noor</au><au>Malik, M. Y.</au><au>Zehra, Iffat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoparticles individualities in both Newtonian and Casson fluid models by way of stratified media: A numerical analysis</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2018-03-22</date><risdate>2018</risdate><volume>41</volume><issue>3</issue><spage>37</spage><epage>10</epage><pages>37-10</pages><artnum>37</artnum><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>. The current paper contains the simultaneous analysis of both Newtonian and non-Newtonian nanofluid models. The fluid flow is achieved by considering the no-slip condition subject to a stretched cylindrical surface. The flow regime manifests with pertinent physical effects, namely temperature stratification, concentration stratification, thermal radiation, heat generation, magnetic field, dual convection and chemical reaction. The strength of fluid temperature and nanoparticles concentration adjacent to an inclined cylindrical surface is assumed to be higher than the ambient flow field. A mathematical model is developed in terms of differential equations. A self-constructed numerical algorithm is executed to report the numerical solution. The resultant annotations are illustrated through both tables and graphs. It is noticed that the Casson fluid shows significant variations with respect to the involved physical parameters as compared to the Newtonian fluid model. Moreover, the analysis is certified through comparison with the existing values in a limiting sense. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29564571</pmid><doi>10.1140/epje/i2018-11641-8</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1292-8941
ispartof The European physical journal. E, Soft matter and biological physics, 2018-03, Vol.41 (3), p.37-10, Article 37
issn 1292-8941
1292-895X
language eng
recordid cdi_proquest_miscellaneous_2017059129
source Springer Nature
subjects Annotations
Biological and Medical Physics
Biophysics
Chemical reactions
Complex Fluids and Microfluidics
Complex Systems
Computational fluid dynamics
Condensed matter physics
Differential equations
Fluid flow
Heat generation
Mathematical models
Nanofluids
Nanoparticles
Nanotechnology
Newtonian fluids
Numerical analysis
Physical properties
Physics
Physics and Astronomy
Polymer Sciences
Regular Article
Soft and Granular Matter
Stratification
Surfaces and Interfaces
Thermal radiation
Thin Films
title Nanoparticles individualities in both Newtonian and Casson fluid models by way of stratified media: A numerical analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoparticles%20individualities%20in%20both%20Newtonian%20and%20Casson%20fluid%20models%20by%20way%20of%20stratified%20media:%20A%20numerical%20analysis&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Ur%20Rehman,%20Khalil&rft.date=2018-03-22&rft.volume=41&rft.issue=3&rft.spage=37&rft.epage=10&rft.pages=37-10&rft.artnum=37&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/i2018-11641-8&rft_dat=%3Cproquest_cross%3E2017059129%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-5f33eed1a8f4928188a2aadba0e3041c030c63140fe8429b4b1d2ae7d61582283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2016593080&rft_id=info:pmid/29564571&rfr_iscdi=true