Loading…
Alpha B-crystallin is a major component of glial cytoplasmic inclusions in multiple system atrophy
Multiple system atrophy (MSA) is characterized by the formation of oligodendroglial cytoplasmic inclusions (GCIs) consisting of alpha-synuclein filaments. AlphaB-crystallin, a small chaperone protein that binds to unfolded proteins and inhibits aggregation, has been documented in GCIs. We investigat...
Saved in:
Published in: | Neurotoxicity research 2005, Vol.7 (1-2), p.77-85 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multiple system atrophy (MSA) is characterized by the formation of oligodendroglial cytoplasmic inclusions (GCIs) consisting of alpha-synuclein filaments. AlphaB-crystallin, a small chaperone protein that binds to unfolded proteins and inhibits aggregation, has been documented in GCIs. We investigated the relative abundance and speciation of alphaB-crystallin in GCIs in MSA brains. We also examined the influence of alphaB-crystallin on the formation of cytoplasmic inclusions in cultured glial cells. Immunohistochemistry and confocal microscopy revealed alphaB-crystallin is a prominent component of GCIs, more abundant than in Lewy bodies in Lewy body dementia. One- and two-dimensional gel electrophoresis and mass spectrometric analysis of GCIs immunopurified from MSA brains indicated that alphaB-crystallin is a major protein component with multiple post-translationally modified species. In cultured C6 glioma cells treated with the proteasomal inhibitor, lactacystin, to induce accumulation of ubiquitinated proteins, a subset of cells showed increased cytoplasmic staining for alphaB-crystallin. Proteasome-inhibited cells transfected with GFP-tagged alpha-synuclein resulted in ubiquitin- and alphaB-crystallin-positive aggregates resembling GCIs in MSA brains. Our results indicate that alphaB-crystallin is a major chaperone in MSA, and suggest a role of the protein in the formation of inclusion bodies in glial cells. |
---|---|
ISSN: | 1029-8428 1476-3524 |
DOI: | 10.1007/BF03033778 |