Loading…

Reactivation of organophosphate-inhibited acetylcholinesterase by quaternary pyridinium aldoximes

We investigated the relationship between the chemical structure of acetylcholinesterase (AChE; EC 3.1.1.7) reactivators and their potency in reactivating this enzyme, after prior inhibition by VX (O-ethyl-S-(2-diisopropylaminoethyl)-methylthiophosphonate), tabun, sarin, and cyclosarin. The oximes, p...

Full description

Saved in:
Bibliographic Details
Published in:Neurotoxicity research 2004, Vol.6 (7-8), p.565-570
Main Authors: Kuca, Kamil, Patocka, Jirí, Cabal, Jirí, Jun, Daniel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigated the relationship between the chemical structure of acetylcholinesterase (AChE; EC 3.1.1.7) reactivators and their potency in reactivating this enzyme, after prior inhibition by VX (O-ethyl-S-(2-diisopropylaminoethyl)-methylthiophosphonate), tabun, sarin, and cyclosarin. The oximes, pralidoxime (2-PAM), HI-6 [1-(2-hydroxyiminomethylpyridinium)-3-(4-carbamoylpyridinium)-2-oxa-propane dichloride], obidoxime and HS-6 [1-(2-hydroxyiminomethylpyridinium)-3-(3-carbamoylpyridinium)-2-oxa-propane dichloride] were used as representatives of the group of AChE reactivators. Rat brain AChE was used as the appropriate source of the enzyme. Our results confirm that there is no single broad-spectrum oxime suitable for the treatment of poisoning with all highly toxic organophosphorus agents.
ISSN:1029-8428
1476-3524
DOI:10.1007/BF03033452