Loading…
A review in gait rehabilitation devices and applied control techniques
Purpose: The aim of this review is to analyse the different existing technologies for gait rehabilitation, focusing mainly in robotic devices. Those robots help the patient to recover a lost function due to neurological gait disorders, accidents or after injury. Besides, they facilitate the identifi...
Saved in:
Published in: | Disability and rehabilitation: Assistive technology 2018-11, Vol.13 (8), p.819-834 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose: The aim of this review is to analyse the different existing technologies for gait rehabilitation, focusing mainly in robotic devices. Those robots help the patient to recover a lost function due to neurological gait disorders, accidents or after injury. Besides, they facilitate the identification of normal and abnormal features by registering muscle activity providing the doctor important data where he can observe the evolution of the patient.
Method: A deep literature review was realized using selected keywords considering not only the most common medical and engineering databases, but also other available sources that provide information on commercial and scientific gait rehabilitation devices. The founded literature for this review corresponds to control techniques for gait rehabilitation robots, since the early seventies to the present year.
Results: Different control strategies for gait analysis in rehabilitation devices have been developed and implemented such as position control, force and impedance control, haptic simulation, and control of EMG signals. These control techniques are used to analyze the force of the patient during therapy, compensating it with the force generated by the mechanism in the rehabilitation device. It is observed that the largest number of studies reported, focuses on the impedance control technique. Leading to include new control techniques and validate them using the necessary protocols with ill patients, obtaining reliable results that allows a progressive and active rehabilitation.
Conclusions: With this exhaustive review, we can conclude that the degree of complexity of the rehabilitation device influences in short and long-term therapeutic results since the movements become more controlled. However, there is still a lot of work in the sense of motion control in order to perform trajectories that are more alike the natural movements of humans. There are many control techniques in other areas, which seek to improve the performance of the process. These techniques may possibly be applicable in gait rehabilitation devices, obtaining controllers that are more efficient and that adapts to different people and the necessities that entail every disease.
Implications for Rehabilitation
Rehabilitation helps people to improve the activities of their daily life, allowing them to observe their progress in the functional abilities as the months pass by with intensive and repetitive therapies.
There is a mobility issue whe |
---|---|
ISSN: | 1748-3107 1748-3115 |
DOI: | 10.1080/17483107.2018.1447611 |