Loading…

Extending neutron autoradiography technique for boron concentration measurements in hard tissues

The neutron autoradiography technique using polycarbonate nuclear track detectors (NTD) has been extended to quantify the boron concentration in hard tissues, an application of special interest in Boron Neutron Capture Therapy (BNCT). Chemical and mechanical processing methods to prepare thin tissue...

Full description

Saved in:
Bibliographic Details
Published in:Applied radiation and isotopes 2018-07, Vol.137, p.62-67
Main Authors: Provenzano, Lucas, Olivera, María Silvina, Saint Martin, Gisela, Rodríguez, Luis Miguel, Fregenal, Daniel, Thorp, Silvia I., Pozzi, Emiliano C.C., Curotto, Paula, Postuma, Ian, Altieri, Saverio, González, Sara J., Bortolussi, Silva, Portu, Agustina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The neutron autoradiography technique using polycarbonate nuclear track detectors (NTD) has been extended to quantify the boron concentration in hard tissues, an application of special interest in Boron Neutron Capture Therapy (BNCT). Chemical and mechanical processing methods to prepare thin tissue sections as required by this technique have been explored. Four different decalcification methods governed by slow and fast kinetics were tested in boron-loaded bones. Due to the significant loss of the boron content, this technique was discarded. On the contrary, mechanical manipulation to obtain bone powder and tissue sections of tens of microns thick proved reproducible and suitable, ensuring a proper conservation of the boron content in the samples. A calibration curve that relates the 10B concentration of a bone sample and the track density in a Lexan NTD is presented. Bone powder embedded in boric acid solution with known boron concentrations between 0 and 100 ppm was used as a standard material. The samples, contained in slim Lexan cases, were exposed to a neutron fluence of 1012 cm−2 at the thermal column central facility of the RA-3 reactor (Argentina). The revealed tracks in the NTD were counted with an image processing software. The effect of track overlapping was studied and corresponding corrections were implemented in the presented calibration curve. Stochastic simulations of the track densities produced by the products of the 10B thermal neutron capture reaction for different boron concentrations in bone were performed and compared with the experimental results. The remarkable agreement between the two curves suggested the suitability of the obtained experimental calibration curve. This neutron autoradiography technique was finally applied to determine the boron concentration in pulverized and compact bone samples coming from a sheep experimental model. The obtained results for both type of samples agreed with boron measurements carried out by ICP-OES within experimental uncertainties. The fact that the histological structure of bone sections remains preserved allows for future boron microdistribution analysis. •The neutron autoradiography technique was extended to measure boron in bone.•A reference system was developed for boron concentration measurements in bone.•Stochastic simulations of tracks generation were compared with measurements.•The developed system was validated by ICP-OES measurements of sheep bone.
ISSN:0969-8043
1872-9800
DOI:10.1016/j.apradiso.2018.03.011