Loading…

Guiding 3D cell migration in deformed synthetic hydrogel microstructures

The ability of cells to navigate through the extracellular matrix, a network of biopolymers, is controlled by an interplay of cellular activity and mechanical network properties. Synthetic hydrogels with highly tuneable compositions and elastic properties are convenient model systems for the investi...

Full description

Saved in:
Bibliographic Details
Published in:Soft matter 2018, Vol.14 (15), p.2816-2826
Main Authors: Dietrich, Miriam, Le Roy, Hugo, Brückner, David B, Engelke, Hanna, Zantl, Roman, Rädler, Joachim O, Broedersz, Chase P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-8b9896e033e22ad9b0af4a4322dee6f5f268e6c9c518f3340bb66160f3caf3963
cites cdi_FETCH-LOGICAL-c388t-8b9896e033e22ad9b0af4a4322dee6f5f268e6c9c518f3340bb66160f3caf3963
container_end_page 2826
container_issue 15
container_start_page 2816
container_title Soft matter
container_volume 14
creator Dietrich, Miriam
Le Roy, Hugo
Brückner, David B
Engelke, Hanna
Zantl, Roman
Rädler, Joachim O
Broedersz, Chase P
description The ability of cells to navigate through the extracellular matrix, a network of biopolymers, is controlled by an interplay of cellular activity and mechanical network properties. Synthetic hydrogels with highly tuneable compositions and elastic properties are convenient model systems for the investigation of cell migration in 3D polymer networks. To study the impact of macroscopic deformations on single cell migration, we present a novel method to introduce uniaxial strain in matrices by microstructuring photo-polymerizable hydrogel strips with embedded cells in a channel slide. We find that such confined swelling results in a strained matrix in which cells exhibit an anisotropic migration response parallel to the strain direction. Surprisingly, however, the anisotropy of migration reaches a maximum at intermediate strain levels and decreases strongly at higher strains. We account for this non-monotonic response in the migration anisotropy with a computational model, in which we describe a cell performing durotactic and proteolytic migration in a deformable elastic meshwork. Our simulations reveal that the macroscopically applied strain induces a local geometric anisotropic stiffening of the matrix. This local anisotropic stiffening acts as a guidance cue for directed cell migration, resulting in a non-monotonic dependence on strain, as observed in our experiments. Our findings provide a mechanism for mechanical guidance that connects network properties on the cellular scale to cell migration behaviour.
doi_str_mv 10.1039/c8sm00018b
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2019811425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2026593026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-8b9896e033e22ad9b0af4a4322dee6f5f268e6c9c518f3340bb66160f3caf3963</originalsourceid><addsrcrecordid>eNpdkLFOwzAQhi0EoqWw8AAoEgtCCtg-x9gjFGiRihgAiS1yHLt11STFjoe-PQktHVjubvj0678PoXOCbwgGeatFqDDGRBQHaEjuGEu5YOJwf8PXAJ2EsMQYBCP8GA2ozGRGCQzRdBJd6ep5Ao-JNqtVUrm5V61r6sTVSWls4ytTJmFTtwvTOp0sNqVv5qYHtW9C66NuozfhFB1ZtQrmbLdH6PP56WM8TWdvk5fx_SzVIESbikIKyQ0GMJSqUhZYWaYYUFoaw21mKReGa6kzIiwAw0XBOeHYglYWJIcRutrmrn3zHU1o88qFvrmqTRNDTjGRghBGsw69_Icum-jrrl1HUZ5J6GZHXW-p_p3gjc3X3lXKb3KC895vPhbvr79-Hzr4YhcZi87LHv0TCj9owXT-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2026593026</pqid></control><display><type>article</type><title>Guiding 3D cell migration in deformed synthetic hydrogel microstructures</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Dietrich, Miriam ; Le Roy, Hugo ; Brückner, David B ; Engelke, Hanna ; Zantl, Roman ; Rädler, Joachim O ; Broedersz, Chase P</creator><creatorcontrib>Dietrich, Miriam ; Le Roy, Hugo ; Brückner, David B ; Engelke, Hanna ; Zantl, Roman ; Rädler, Joachim O ; Broedersz, Chase P</creatorcontrib><description>The ability of cells to navigate through the extracellular matrix, a network of biopolymers, is controlled by an interplay of cellular activity and mechanical network properties. Synthetic hydrogels with highly tuneable compositions and elastic properties are convenient model systems for the investigation of cell migration in 3D polymer networks. To study the impact of macroscopic deformations on single cell migration, we present a novel method to introduce uniaxial strain in matrices by microstructuring photo-polymerizable hydrogel strips with embedded cells in a channel slide. We find that such confined swelling results in a strained matrix in which cells exhibit an anisotropic migration response parallel to the strain direction. Surprisingly, however, the anisotropy of migration reaches a maximum at intermediate strain levels and decreases strongly at higher strains. We account for this non-monotonic response in the migration anisotropy with a computational model, in which we describe a cell performing durotactic and proteolytic migration in a deformable elastic meshwork. Our simulations reveal that the macroscopically applied strain induces a local geometric anisotropic stiffening of the matrix. This local anisotropic stiffening acts as a guidance cue for directed cell migration, resulting in a non-monotonic dependence on strain, as observed in our experiments. Our findings provide a mechanism for mechanical guidance that connects network properties on the cellular scale to cell migration behaviour.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c8sm00018b</identifier><identifier>PMID: 29595213</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anisotropy ; Biopolymers ; Cell adhesion &amp; migration ; Cell migration ; Cellular communication ; Computer applications ; Computer simulation ; Deformation mechanisms ; Elastic deformation ; Elastic properties ; Extracellular matrix ; Formability ; Hydrogels ; Navigation behavior ; Properties (attributes) ; Proteolysis ; Stiffening ; Strain</subject><ispartof>Soft matter, 2018, Vol.14 (15), p.2816-2826</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-8b9896e033e22ad9b0af4a4322dee6f5f268e6c9c518f3340bb66160f3caf3963</citedby><cites>FETCH-LOGICAL-c388t-8b9896e033e22ad9b0af4a4322dee6f5f268e6c9c518f3340bb66160f3caf3963</cites><orcidid>0000-0001-7283-3704 ; 0000-0002-8709-5561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29595213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dietrich, Miriam</creatorcontrib><creatorcontrib>Le Roy, Hugo</creatorcontrib><creatorcontrib>Brückner, David B</creatorcontrib><creatorcontrib>Engelke, Hanna</creatorcontrib><creatorcontrib>Zantl, Roman</creatorcontrib><creatorcontrib>Rädler, Joachim O</creatorcontrib><creatorcontrib>Broedersz, Chase P</creatorcontrib><title>Guiding 3D cell migration in deformed synthetic hydrogel microstructures</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>The ability of cells to navigate through the extracellular matrix, a network of biopolymers, is controlled by an interplay of cellular activity and mechanical network properties. Synthetic hydrogels with highly tuneable compositions and elastic properties are convenient model systems for the investigation of cell migration in 3D polymer networks. To study the impact of macroscopic deformations on single cell migration, we present a novel method to introduce uniaxial strain in matrices by microstructuring photo-polymerizable hydrogel strips with embedded cells in a channel slide. We find that such confined swelling results in a strained matrix in which cells exhibit an anisotropic migration response parallel to the strain direction. Surprisingly, however, the anisotropy of migration reaches a maximum at intermediate strain levels and decreases strongly at higher strains. We account for this non-monotonic response in the migration anisotropy with a computational model, in which we describe a cell performing durotactic and proteolytic migration in a deformable elastic meshwork. Our simulations reveal that the macroscopically applied strain induces a local geometric anisotropic stiffening of the matrix. This local anisotropic stiffening acts as a guidance cue for directed cell migration, resulting in a non-monotonic dependence on strain, as observed in our experiments. Our findings provide a mechanism for mechanical guidance that connects network properties on the cellular scale to cell migration behaviour.</description><subject>Anisotropy</subject><subject>Biopolymers</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell migration</subject><subject>Cellular communication</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Deformation mechanisms</subject><subject>Elastic deformation</subject><subject>Elastic properties</subject><subject>Extracellular matrix</subject><subject>Formability</subject><subject>Hydrogels</subject><subject>Navigation behavior</subject><subject>Properties (attributes)</subject><subject>Proteolysis</subject><subject>Stiffening</subject><subject>Strain</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkLFOwzAQhi0EoqWw8AAoEgtCCtg-x9gjFGiRihgAiS1yHLt11STFjoe-PQktHVjubvj0678PoXOCbwgGeatFqDDGRBQHaEjuGEu5YOJwf8PXAJ2EsMQYBCP8GA2ozGRGCQzRdBJd6ep5Ao-JNqtVUrm5V61r6sTVSWls4ytTJmFTtwvTOp0sNqVv5qYHtW9C66NuozfhFB1ZtQrmbLdH6PP56WM8TWdvk5fx_SzVIESbikIKyQ0GMJSqUhZYWaYYUFoaw21mKReGa6kzIiwAw0XBOeHYglYWJIcRutrmrn3zHU1o88qFvrmqTRNDTjGRghBGsw69_Icum-jrrl1HUZ5J6GZHXW-p_p3gjc3X3lXKb3KC895vPhbvr79-Hzr4YhcZi87LHv0TCj9owXT-</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Dietrich, Miriam</creator><creator>Le Roy, Hugo</creator><creator>Brückner, David B</creator><creator>Engelke, Hanna</creator><creator>Zantl, Roman</creator><creator>Rädler, Joachim O</creator><creator>Broedersz, Chase P</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7283-3704</orcidid><orcidid>https://orcid.org/0000-0002-8709-5561</orcidid></search><sort><creationdate>2018</creationdate><title>Guiding 3D cell migration in deformed synthetic hydrogel microstructures</title><author>Dietrich, Miriam ; Le Roy, Hugo ; Brückner, David B ; Engelke, Hanna ; Zantl, Roman ; Rädler, Joachim O ; Broedersz, Chase P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-8b9896e033e22ad9b0af4a4322dee6f5f268e6c9c518f3340bb66160f3caf3963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Biopolymers</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell migration</topic><topic>Cellular communication</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Deformation mechanisms</topic><topic>Elastic deformation</topic><topic>Elastic properties</topic><topic>Extracellular matrix</topic><topic>Formability</topic><topic>Hydrogels</topic><topic>Navigation behavior</topic><topic>Properties (attributes)</topic><topic>Proteolysis</topic><topic>Stiffening</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dietrich, Miriam</creatorcontrib><creatorcontrib>Le Roy, Hugo</creatorcontrib><creatorcontrib>Brückner, David B</creatorcontrib><creatorcontrib>Engelke, Hanna</creatorcontrib><creatorcontrib>Zantl, Roman</creatorcontrib><creatorcontrib>Rädler, Joachim O</creatorcontrib><creatorcontrib>Broedersz, Chase P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dietrich, Miriam</au><au>Le Roy, Hugo</au><au>Brückner, David B</au><au>Engelke, Hanna</au><au>Zantl, Roman</au><au>Rädler, Joachim O</au><au>Broedersz, Chase P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guiding 3D cell migration in deformed synthetic hydrogel microstructures</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2018</date><risdate>2018</risdate><volume>14</volume><issue>15</issue><spage>2816</spage><epage>2826</epage><pages>2816-2826</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>The ability of cells to navigate through the extracellular matrix, a network of biopolymers, is controlled by an interplay of cellular activity and mechanical network properties. Synthetic hydrogels with highly tuneable compositions and elastic properties are convenient model systems for the investigation of cell migration in 3D polymer networks. To study the impact of macroscopic deformations on single cell migration, we present a novel method to introduce uniaxial strain in matrices by microstructuring photo-polymerizable hydrogel strips with embedded cells in a channel slide. We find that such confined swelling results in a strained matrix in which cells exhibit an anisotropic migration response parallel to the strain direction. Surprisingly, however, the anisotropy of migration reaches a maximum at intermediate strain levels and decreases strongly at higher strains. We account for this non-monotonic response in the migration anisotropy with a computational model, in which we describe a cell performing durotactic and proteolytic migration in a deformable elastic meshwork. Our simulations reveal that the macroscopically applied strain induces a local geometric anisotropic stiffening of the matrix. This local anisotropic stiffening acts as a guidance cue for directed cell migration, resulting in a non-monotonic dependence on strain, as observed in our experiments. Our findings provide a mechanism for mechanical guidance that connects network properties on the cellular scale to cell migration behaviour.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29595213</pmid><doi>10.1039/c8sm00018b</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7283-3704</orcidid><orcidid>https://orcid.org/0000-0002-8709-5561</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2018, Vol.14 (15), p.2816-2826
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_miscellaneous_2019811425
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Anisotropy
Biopolymers
Cell adhesion & migration
Cell migration
Cellular communication
Computer applications
Computer simulation
Deformation mechanisms
Elastic deformation
Elastic properties
Extracellular matrix
Formability
Hydrogels
Navigation behavior
Properties (attributes)
Proteolysis
Stiffening
Strain
title Guiding 3D cell migration in deformed synthetic hydrogel microstructures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guiding%203D%20cell%20migration%20in%20deformed%20synthetic%20hydrogel%20microstructures&rft.jtitle=Soft%20matter&rft.au=Dietrich,%20Miriam&rft.date=2018&rft.volume=14&rft.issue=15&rft.spage=2816&rft.epage=2826&rft.pages=2816-2826&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c8sm00018b&rft_dat=%3Cproquest_cross%3E2026593026%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-8b9896e033e22ad9b0af4a4322dee6f5f268e6c9c518f3340bb66160f3caf3963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2026593026&rft_id=info:pmid/29595213&rfr_iscdi=true