Loading…
Guiding 3D cell migration in deformed synthetic hydrogel microstructures
The ability of cells to navigate through the extracellular matrix, a network of biopolymers, is controlled by an interplay of cellular activity and mechanical network properties. Synthetic hydrogels with highly tuneable compositions and elastic properties are convenient model systems for the investi...
Saved in:
Published in: | Soft matter 2018, Vol.14 (15), p.2816-2826 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-8b9896e033e22ad9b0af4a4322dee6f5f268e6c9c518f3340bb66160f3caf3963 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-8b9896e033e22ad9b0af4a4322dee6f5f268e6c9c518f3340bb66160f3caf3963 |
container_end_page | 2826 |
container_issue | 15 |
container_start_page | 2816 |
container_title | Soft matter |
container_volume | 14 |
creator | Dietrich, Miriam Le Roy, Hugo Brückner, David B Engelke, Hanna Zantl, Roman Rädler, Joachim O Broedersz, Chase P |
description | The ability of cells to navigate through the extracellular matrix, a network of biopolymers, is controlled by an interplay of cellular activity and mechanical network properties. Synthetic hydrogels with highly tuneable compositions and elastic properties are convenient model systems for the investigation of cell migration in 3D polymer networks. To study the impact of macroscopic deformations on single cell migration, we present a novel method to introduce uniaxial strain in matrices by microstructuring photo-polymerizable hydrogel strips with embedded cells in a channel slide. We find that such confined swelling results in a strained matrix in which cells exhibit an anisotropic migration response parallel to the strain direction. Surprisingly, however, the anisotropy of migration reaches a maximum at intermediate strain levels and decreases strongly at higher strains. We account for this non-monotonic response in the migration anisotropy with a computational model, in which we describe a cell performing durotactic and proteolytic migration in a deformable elastic meshwork. Our simulations reveal that the macroscopically applied strain induces a local geometric anisotropic stiffening of the matrix. This local anisotropic stiffening acts as a guidance cue for directed cell migration, resulting in a non-monotonic dependence on strain, as observed in our experiments. Our findings provide a mechanism for mechanical guidance that connects network properties on the cellular scale to cell migration behaviour. |
doi_str_mv | 10.1039/c8sm00018b |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2019811425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2026593026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-8b9896e033e22ad9b0af4a4322dee6f5f268e6c9c518f3340bb66160f3caf3963</originalsourceid><addsrcrecordid>eNpdkLFOwzAQhi0EoqWw8AAoEgtCCtg-x9gjFGiRihgAiS1yHLt11STFjoe-PQktHVjubvj0678PoXOCbwgGeatFqDDGRBQHaEjuGEu5YOJwf8PXAJ2EsMQYBCP8GA2ozGRGCQzRdBJd6ep5Ao-JNqtVUrm5V61r6sTVSWls4ytTJmFTtwvTOp0sNqVv5qYHtW9C66NuozfhFB1ZtQrmbLdH6PP56WM8TWdvk5fx_SzVIESbikIKyQ0GMJSqUhZYWaYYUFoaw21mKReGa6kzIiwAw0XBOeHYglYWJIcRutrmrn3zHU1o88qFvrmqTRNDTjGRghBGsw69_Icum-jrrl1HUZ5J6GZHXW-p_p3gjc3X3lXKb3KC895vPhbvr79-Hzr4YhcZi87LHv0TCj9owXT-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2026593026</pqid></control><display><type>article</type><title>Guiding 3D cell migration in deformed synthetic hydrogel microstructures</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Dietrich, Miriam ; Le Roy, Hugo ; Brückner, David B ; Engelke, Hanna ; Zantl, Roman ; Rädler, Joachim O ; Broedersz, Chase P</creator><creatorcontrib>Dietrich, Miriam ; Le Roy, Hugo ; Brückner, David B ; Engelke, Hanna ; Zantl, Roman ; Rädler, Joachim O ; Broedersz, Chase P</creatorcontrib><description>The ability of cells to navigate through the extracellular matrix, a network of biopolymers, is controlled by an interplay of cellular activity and mechanical network properties. Synthetic hydrogels with highly tuneable compositions and elastic properties are convenient model systems for the investigation of cell migration in 3D polymer networks. To study the impact of macroscopic deformations on single cell migration, we present a novel method to introduce uniaxial strain in matrices by microstructuring photo-polymerizable hydrogel strips with embedded cells in a channel slide. We find that such confined swelling results in a strained matrix in which cells exhibit an anisotropic migration response parallel to the strain direction. Surprisingly, however, the anisotropy of migration reaches a maximum at intermediate strain levels and decreases strongly at higher strains. We account for this non-monotonic response in the migration anisotropy with a computational model, in which we describe a cell performing durotactic and proteolytic migration in a deformable elastic meshwork. Our simulations reveal that the macroscopically applied strain induces a local geometric anisotropic stiffening of the matrix. This local anisotropic stiffening acts as a guidance cue for directed cell migration, resulting in a non-monotonic dependence on strain, as observed in our experiments. Our findings provide a mechanism for mechanical guidance that connects network properties on the cellular scale to cell migration behaviour.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c8sm00018b</identifier><identifier>PMID: 29595213</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anisotropy ; Biopolymers ; Cell adhesion & migration ; Cell migration ; Cellular communication ; Computer applications ; Computer simulation ; Deformation mechanisms ; Elastic deformation ; Elastic properties ; Extracellular matrix ; Formability ; Hydrogels ; Navigation behavior ; Properties (attributes) ; Proteolysis ; Stiffening ; Strain</subject><ispartof>Soft matter, 2018, Vol.14 (15), p.2816-2826</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-8b9896e033e22ad9b0af4a4322dee6f5f268e6c9c518f3340bb66160f3caf3963</citedby><cites>FETCH-LOGICAL-c388t-8b9896e033e22ad9b0af4a4322dee6f5f268e6c9c518f3340bb66160f3caf3963</cites><orcidid>0000-0001-7283-3704 ; 0000-0002-8709-5561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29595213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dietrich, Miriam</creatorcontrib><creatorcontrib>Le Roy, Hugo</creatorcontrib><creatorcontrib>Brückner, David B</creatorcontrib><creatorcontrib>Engelke, Hanna</creatorcontrib><creatorcontrib>Zantl, Roman</creatorcontrib><creatorcontrib>Rädler, Joachim O</creatorcontrib><creatorcontrib>Broedersz, Chase P</creatorcontrib><title>Guiding 3D cell migration in deformed synthetic hydrogel microstructures</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>The ability of cells to navigate through the extracellular matrix, a network of biopolymers, is controlled by an interplay of cellular activity and mechanical network properties. Synthetic hydrogels with highly tuneable compositions and elastic properties are convenient model systems for the investigation of cell migration in 3D polymer networks. To study the impact of macroscopic deformations on single cell migration, we present a novel method to introduce uniaxial strain in matrices by microstructuring photo-polymerizable hydrogel strips with embedded cells in a channel slide. We find that such confined swelling results in a strained matrix in which cells exhibit an anisotropic migration response parallel to the strain direction. Surprisingly, however, the anisotropy of migration reaches a maximum at intermediate strain levels and decreases strongly at higher strains. We account for this non-monotonic response in the migration anisotropy with a computational model, in which we describe a cell performing durotactic and proteolytic migration in a deformable elastic meshwork. Our simulations reveal that the macroscopically applied strain induces a local geometric anisotropic stiffening of the matrix. This local anisotropic stiffening acts as a guidance cue for directed cell migration, resulting in a non-monotonic dependence on strain, as observed in our experiments. Our findings provide a mechanism for mechanical guidance that connects network properties on the cellular scale to cell migration behaviour.</description><subject>Anisotropy</subject><subject>Biopolymers</subject><subject>Cell adhesion & migration</subject><subject>Cell migration</subject><subject>Cellular communication</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Deformation mechanisms</subject><subject>Elastic deformation</subject><subject>Elastic properties</subject><subject>Extracellular matrix</subject><subject>Formability</subject><subject>Hydrogels</subject><subject>Navigation behavior</subject><subject>Properties (attributes)</subject><subject>Proteolysis</subject><subject>Stiffening</subject><subject>Strain</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkLFOwzAQhi0EoqWw8AAoEgtCCtg-x9gjFGiRihgAiS1yHLt11STFjoe-PQktHVjubvj0678PoXOCbwgGeatFqDDGRBQHaEjuGEu5YOJwf8PXAJ2EsMQYBCP8GA2ozGRGCQzRdBJd6ep5Ao-JNqtVUrm5V61r6sTVSWls4ytTJmFTtwvTOp0sNqVv5qYHtW9C66NuozfhFB1ZtQrmbLdH6PP56WM8TWdvk5fx_SzVIESbikIKyQ0GMJSqUhZYWaYYUFoaw21mKReGa6kzIiwAw0XBOeHYglYWJIcRutrmrn3zHU1o88qFvrmqTRNDTjGRghBGsw69_Icum-jrrl1HUZ5J6GZHXW-p_p3gjc3X3lXKb3KC895vPhbvr79-Hzr4YhcZi87LHv0TCj9owXT-</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Dietrich, Miriam</creator><creator>Le Roy, Hugo</creator><creator>Brückner, David B</creator><creator>Engelke, Hanna</creator><creator>Zantl, Roman</creator><creator>Rädler, Joachim O</creator><creator>Broedersz, Chase P</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7283-3704</orcidid><orcidid>https://orcid.org/0000-0002-8709-5561</orcidid></search><sort><creationdate>2018</creationdate><title>Guiding 3D cell migration in deformed synthetic hydrogel microstructures</title><author>Dietrich, Miriam ; Le Roy, Hugo ; Brückner, David B ; Engelke, Hanna ; Zantl, Roman ; Rädler, Joachim O ; Broedersz, Chase P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-8b9896e033e22ad9b0af4a4322dee6f5f268e6c9c518f3340bb66160f3caf3963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Biopolymers</topic><topic>Cell adhesion & migration</topic><topic>Cell migration</topic><topic>Cellular communication</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Deformation mechanisms</topic><topic>Elastic deformation</topic><topic>Elastic properties</topic><topic>Extracellular matrix</topic><topic>Formability</topic><topic>Hydrogels</topic><topic>Navigation behavior</topic><topic>Properties (attributes)</topic><topic>Proteolysis</topic><topic>Stiffening</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dietrich, Miriam</creatorcontrib><creatorcontrib>Le Roy, Hugo</creatorcontrib><creatorcontrib>Brückner, David B</creatorcontrib><creatorcontrib>Engelke, Hanna</creatorcontrib><creatorcontrib>Zantl, Roman</creatorcontrib><creatorcontrib>Rädler, Joachim O</creatorcontrib><creatorcontrib>Broedersz, Chase P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dietrich, Miriam</au><au>Le Roy, Hugo</au><au>Brückner, David B</au><au>Engelke, Hanna</au><au>Zantl, Roman</au><au>Rädler, Joachim O</au><au>Broedersz, Chase P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guiding 3D cell migration in deformed synthetic hydrogel microstructures</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2018</date><risdate>2018</risdate><volume>14</volume><issue>15</issue><spage>2816</spage><epage>2826</epage><pages>2816-2826</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>The ability of cells to navigate through the extracellular matrix, a network of biopolymers, is controlled by an interplay of cellular activity and mechanical network properties. Synthetic hydrogels with highly tuneable compositions and elastic properties are convenient model systems for the investigation of cell migration in 3D polymer networks. To study the impact of macroscopic deformations on single cell migration, we present a novel method to introduce uniaxial strain in matrices by microstructuring photo-polymerizable hydrogel strips with embedded cells in a channel slide. We find that such confined swelling results in a strained matrix in which cells exhibit an anisotropic migration response parallel to the strain direction. Surprisingly, however, the anisotropy of migration reaches a maximum at intermediate strain levels and decreases strongly at higher strains. We account for this non-monotonic response in the migration anisotropy with a computational model, in which we describe a cell performing durotactic and proteolytic migration in a deformable elastic meshwork. Our simulations reveal that the macroscopically applied strain induces a local geometric anisotropic stiffening of the matrix. This local anisotropic stiffening acts as a guidance cue for directed cell migration, resulting in a non-monotonic dependence on strain, as observed in our experiments. Our findings provide a mechanism for mechanical guidance that connects network properties on the cellular scale to cell migration behaviour.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29595213</pmid><doi>10.1039/c8sm00018b</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7283-3704</orcidid><orcidid>https://orcid.org/0000-0002-8709-5561</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2018, Vol.14 (15), p.2816-2826 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_proquest_miscellaneous_2019811425 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Anisotropy Biopolymers Cell adhesion & migration Cell migration Cellular communication Computer applications Computer simulation Deformation mechanisms Elastic deformation Elastic properties Extracellular matrix Formability Hydrogels Navigation behavior Properties (attributes) Proteolysis Stiffening Strain |
title | Guiding 3D cell migration in deformed synthetic hydrogel microstructures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guiding%203D%20cell%20migration%20in%20deformed%20synthetic%20hydrogel%20microstructures&rft.jtitle=Soft%20matter&rft.au=Dietrich,%20Miriam&rft.date=2018&rft.volume=14&rft.issue=15&rft.spage=2816&rft.epage=2826&rft.pages=2816-2826&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c8sm00018b&rft_dat=%3Cproquest_cross%3E2026593026%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-8b9896e033e22ad9b0af4a4322dee6f5f268e6c9c518f3340bb66160f3caf3963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2026593026&rft_id=info:pmid/29595213&rfr_iscdi=true |