Loading…

Passaic river sediment interstitial water phase I toxicity identification evaluation

A suite of tests was conducted to evaluate and identify the cause or causes of toxicity in Passaic River sediments. Sediment toxicity was measured with three types of bioassays: a whole sediment bioassay with the marine amphipod, Ampelisca abdita, and interstitial water bioassays with A. abdita and...

Full description

Saved in:
Bibliographic Details
Published in:Chemosphere (Oxford) 2008-02, Vol.70 (10), p.1737-1747
Main Authors: Kay, Denise P., Newsted, John L., BenKinney, Marie T., Iannuzzi, Timothy J., Giesy, John P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A suite of tests was conducted to evaluate and identify the cause or causes of toxicity in Passaic River sediments. Sediment toxicity was measured with three types of bioassays: a whole sediment bioassay with the marine amphipod, Ampelisca abdita, and interstitial water bioassays with A. abdita and the bioluminescent bacterium Vibrio fisheri (Microtox ®). In addition, a Phase I Toxicity Identification Evaluation (TIE) was conducted to elucidate the cause of observed toxicity. Analytical concentrations of selected residues in whole sediment and interstitial water from the five sampling stations were considered in conjunction with the conclusions drawn from the toxicity tests and Phase I TIE results. Finally, a toxic units approach was used to evaluate the predicted toxicity of measured interstitial water residue concentrations. There was a lack of toxic response in the short-term interstitial water bioassays, indicating that oxidants, soluble forms of metals, and dissolved phase neutral organics were not likely toxicants. However, there was significant toxicity indicated by the whole sediment A. abidita bioassays. After 10 days, there was complete or near complete mortality in amphipods exposed to all of the sediment samples tested. Removal of interstitial water toxicity by filtration was common to all four stations that exhibited measurable initial toxicity. The observed toxicity characteristics are consistent with particle associated neutral organics. This conclusion is supported by toxicity removal via filtration, lack of toxicity in the Microtox ® assays, and the fact that whole sediments were more toxic than was interstitial water.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2007.08.048