Loading…

Transketolase Regulates the Metabolic Switch to Control Breast Cancer Cell Metastasis via the α-Ketoglutarate Signaling Pathway

Although metabolic reprogramming is recognized as a hallmark of tumorigenesis and progression, little is known about metabolic enzymes and oncometabolites that regulate breast cancer metastasis, and very few metabolic molecules have been identified as potential therapeutic targets. In this study, th...

Full description

Saved in:
Bibliographic Details
Published in:Cancer research (Chicago, Ill.) Ill.), 2018-06, Vol.78 (11), p.2799-2812
Main Authors: Tseng, Chien-Wei, Kuo, Wen-Hung, Chan, Shih-Hsuan, Chan, Hong-Lin, Chang, King-Jen, Wang, Lu-Hai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although metabolic reprogramming is recognized as a hallmark of tumorigenesis and progression, little is known about metabolic enzymes and oncometabolites that regulate breast cancer metastasis, and very few metabolic molecules have been identified as potential therapeutic targets. In this study, the transketolase (TKT) expression correlated with tumor size in the 4T1/BALB/c syngeneic model. In addition, TKT expression was higher in lymph node metastases compared with primary tumor or normal tissues of patients, and high TKT levels were associated with poor survival. Depletion of TKT or addition of alpha-ketoglutarate (αKG) enhanced the levels of tumor suppressors succinate dehydrogenase and fumarate hydratase (FH), decreasing oncometabolites succinate and fumarate, and further stabilizing HIF prolyl hydroxylase 2 (PHD2) and decreasing HIF1α, ultimately suppressing breast cancer metastasis. Reduced TKT or addition of αKG mediated a dynamic switch of glucose metabolism from glycolysis to oxidative phosphorylation. Various combinations of the TKT inhibitor oxythiamine, docetaxel, and doxorubicin enhanced cell death in triple-negative breast cancer (TNBC) cells. Furthermore, oxythiamine treatment led to increased levels of αKG in TNBC cells. Together, our study has identified a novel TKT-mediated αKG signaling pathway that regulates breast cancer oncogenesis and can be exploited as a modality for improving therapy. These findings uncover the clinical significance of TKT in breast cancer progression and metastasis and demonstrate effective therapy by inhibiting TKT or by adding αKG. .
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-17-2906