Loading…
CRISPR/Cas9-mediated deletion of EcMIH shortens metamorphosis time from mysis larva to postlarva of Exopalaemon carinicauda
The recently emerged CRISPR/Cas9 technology is the most flexible means to produce targeted mutations at the genomic loci in a variety of organisms. In Crustaceans, molt-inhibiting hormone (MIH) is an important negative-regulatory factor and plays a key role in suppressing the molting process. Howeve...
Saved in:
Published in: | Fish & shellfish immunology 2018-06, Vol.77, p.244-251 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The recently emerged CRISPR/Cas9 technology is the most flexible means to produce targeted mutations at the genomic loci in a variety of organisms. In Crustaceans, molt-inhibiting hormone (MIH) is an important negative-regulatory factor and plays a key role in suppressing the molting process. However, whether precise disruption of MIH in crustacean can be achieved and successfully used to improve the development and growth has not been proved. In this research, the complementary DNA (cDNA) and genomic DNA, including flanking regions of the MIH gene (EcMIH) of ridgetail white prawn Exopalaemon carinicauda, were cloned and sequenced. Sequence analysis revealed that EcMIH was composed of three exons and two introns. Analysis by RT-PCR showed that EcMIH mainly expressed in eyestalks. During different development periods, EcMIH was highest in juvenile stage and extremely low in others but adult prawns eyestalks. In addition, we applied CRISPR/Cas9 technology to generate EcMIH knock-out (KO) prawns and then analyzed the changes in their phenotypes. We efficiently generated 12 EcMIH-KO prawns out of 250 injected one-cell stage embryos and the mutant rate reached 4.8% after embryo injection with one sgRNA targeting the second exon of EcMIH. The EcMIH-KO prawns exhibited increased the body length and shortened the metamorphosis time of larvae from mysis larva to postlarva. Meanwhile, EcMIH-KO did not cause the health problems such as early stage death or deformity. In conclusion, we successfully obtained EcMIH gene and generated EcMIH-KO prawns using CRISPR/Cas9 technology. This study will certainly lead to a wide application prospect of MIH gene in prawns breeding.
•The expression profiles of EcMIH were demonstrated.•CRISPR-Cas9 system efficiently generated indels in EcMIH loci.•EcMIH-KO prawns exhibited increased body length and shortened metamorphosis time. |
---|---|
ISSN: | 1050-4648 1095-9947 |
DOI: | 10.1016/j.fsi.2018.04.002 |