Loading…
The increase in posterior tibial slope provides a positive biomechanical effect in posterior-stabilized total knee arthroplasty
Purpose This study aims to clarify the influence of the posterior tibial slope (PTS) on knee joint biomechanics after posterior-stabilized (PS) total knee arthroplasty (TKA) using a computer simulation. Methods A validated TKA computational model was used to evaluate and quantify the effects of an i...
Saved in:
Published in: | Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA sports traumatology, arthroscopy : official journal of the ESSKA, 2018-10, Vol.26 (10), p.3188-3195 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
This study aims to clarify the influence of the posterior tibial slope (PTS) on knee joint biomechanics after posterior-stabilized (PS) total knee arthroplasty (TKA) using a computer simulation.
Methods
A validated TKA computational model was used to evaluate and quantify the effects of an increased PTS. In order to conduct a squat simulation, models with a − 3° to 15° PTS using increments of 3° were developed. Forces on the quadriceps and collateral ligament, a tibial posterior translation, contact point on a polyethylene (PE) insert, and contact stress on the patellofemoral (PF) joint and post in a PE insert were compared.
Results
The maximum force on the quadriceps and the PF contact stress decreased with increases in the PTS. The kinematics on the tibiofemoral (TF) joint translated in an increasingly posterior manner, and the medial and lateral contact points on a PE insert were located in posterior regions with increases in the PTS. Additionally, increases in the PTS decreased the force on the collateral ligament and increased the contact stress on the post in a PE insert. A higher force on the quadriceps is required when the PTS decreases with an equivalent flexion angle.
Conclusions
A surgeon should be prudent in terms of determining the PTS because an excessive increase in the PTS may lead to the progressive loosening of the TF joint due to a reduction in collateral ligament tension and failure of the post in a PE insert. Thus, we support a more individualized approach of optimal PTS determination given the findings of the study. |
---|---|
ISSN: | 0942-2056 1433-7347 |
DOI: | 10.1007/s00167-018-4925-3 |