Loading…

High crystallization of a multiple cation perovskite absorber for low-temperature stable ZnO solar cells with high-efficiency of over 20

ZnO as a promising electron transport layer (ETL) to TiO2 for perovskite solar cells (PSCs) has achieved a power conversion efficiency (PCE) of 18.9%; however, this is still lower than that obtained for TiO2-based PSCs (higher than 20%). Herein, we report the fabrication of high-efficiency methylamm...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2018-01, Vol.10 (15), p.7218-7227
Main Authors: Dong, Xuemei, Chen, Dong, Zhou, Junshuai, Zheng, Yan-Zhen, Tao, Xia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-9ed0e755af8031a0fa5bc4131549d64086e1cc27e79bfb49d36c19baa45295f33
cites cdi_FETCH-LOGICAL-c393t-9ed0e755af8031a0fa5bc4131549d64086e1cc27e79bfb49d36c19baa45295f33
container_end_page 7227
container_issue 15
container_start_page 7218
container_title Nanoscale
container_volume 10
creator Dong, Xuemei
Chen, Dong
Zhou, Junshuai
Zheng, Yan-Zhen
Tao, Xia
description ZnO as a promising electron transport layer (ETL) to TiO2 for perovskite solar cells (PSCs) has achieved a power conversion efficiency (PCE) of 18.9%; however, this is still lower than that obtained for TiO2-based PSCs (higher than 20%). Herein, we report the fabrication of high-efficiency methylammonium (MA) and Cs co-alloyed formamidinium (FA) triple cation perovskite based ZnO PSCs via delicate control of the cation compositions and annealing temperatures. By virtue of structural, morphological, spectral and electrochemical characterizations and analysis, we found that the incorporation of MA and Cs into FA perovskite enables the formation of a highly crystalline black phase perovskite with reduced surface roughness, which inhibits charge recombination and promotes electron transfer at the ZnO/perovskite/spiro-OMeTAD interfaces and hence improves Jsc and FF values of the cell. As a result, the ZnO PSC based on MA0.1FA0.75Cs0.15PbI3 annealed at 110 °C achieved a PCE as high as 20.09%, exceeding the previous highest efficiency recorded for ZnO ETL based PSCs. The optimized MA0.1FA0.75Cs0.15PbI3 material demonstrated excellent reproducibility and long-term cell durability under ambient conditions within 1000 h. Particularly, the incorporation of a small amount of Br into the triple cation perovskite, i.e., MA0.1FA0.75Cs0.15PbI2.9Br0.1 led to a further enhancement in PCE of up to 20.44%, which is comparable with the best-performing MA and Cs-containing FA-based lead halide TiO2 PSCs.
doi_str_mv 10.1039/c8nr00152a
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2022994630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2027739141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-9ed0e755af8031a0fa5bc4131549d64086e1cc27e79bfb49d36c19baa45295f33</originalsourceid><addsrcrecordid>eNpdkcFO3DAQhi1UVGDphQeoLPVSIYXansRZH9GqQCVUpKq9cIkc77hrcOLFdkDbJ-Cx6-1SDpxmNPPN_4_0E3LC2RlnoL6Y-RgZ443Qe-RQsJpVAK1499rL-oAcpXTHmFQg4T05EEoKAC4PyfOV-72iJm5S1t67Pzq7MNJgqabD5LNbe6RmN1xjDI_p3mWkuk8h9hipDZH68FRlHMpa5ykiLUp9ubodb2gKXkdq0PtEn1xe0VVxq9BaZxyOZrM1Co9FR7Bjsm-1T_jhpc7Ir4uvPxdX1fXN5bfF-XVlQEGuFC4Ztk2j7ZwB18zqpjc1B97UailrNpfIjREttqq3fZmBNFz1WteNUI0FmJHPO911DA8TptwNLm0_1COGKXWCCaFULYEV9NMb9C5McSzfbam2BcWL84yc7igTQ0oRbbeObtBx03HWbfPpFvPvP_7lc17gjy-SUz_g8hX9Hwj8BX3CjB4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2027739141</pqid></control><display><type>article</type><title>High crystallization of a multiple cation perovskite absorber for low-temperature stable ZnO solar cells with high-efficiency of over 20</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Dong, Xuemei ; Chen, Dong ; Zhou, Junshuai ; Zheng, Yan-Zhen ; Tao, Xia</creator><creatorcontrib>Dong, Xuemei ; Chen, Dong ; Zhou, Junshuai ; Zheng, Yan-Zhen ; Tao, Xia</creatorcontrib><description>ZnO as a promising electron transport layer (ETL) to TiO2 for perovskite solar cells (PSCs) has achieved a power conversion efficiency (PCE) of 18.9%; however, this is still lower than that obtained for TiO2-based PSCs (higher than 20%). Herein, we report the fabrication of high-efficiency methylammonium (MA) and Cs co-alloyed formamidinium (FA) triple cation perovskite based ZnO PSCs via delicate control of the cation compositions and annealing temperatures. By virtue of structural, morphological, spectral and electrochemical characterizations and analysis, we found that the incorporation of MA and Cs into FA perovskite enables the formation of a highly crystalline black phase perovskite with reduced surface roughness, which inhibits charge recombination and promotes electron transfer at the ZnO/perovskite/spiro-OMeTAD interfaces and hence improves Jsc and FF values of the cell. As a result, the ZnO PSC based on MA0.1FA0.75Cs0.15PbI3 annealed at 110 °C achieved a PCE as high as 20.09%, exceeding the previous highest efficiency recorded for ZnO ETL based PSCs. The optimized MA0.1FA0.75Cs0.15PbI3 material demonstrated excellent reproducibility and long-term cell durability under ambient conditions within 1000 h. Particularly, the incorporation of a small amount of Br into the triple cation perovskite, i.e., MA0.1FA0.75Cs0.15PbI2.9Br0.1 led to a further enhancement in PCE of up to 20.44%, which is comparable with the best-performing MA and Cs-containing FA-based lead halide TiO2 PSCs.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr00152a</identifier><identifier>PMID: 29623316</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Annealing ; Cations ; Crystallization ; Efficiency ; Electron transfer ; Electron transport ; Energy conversion efficiency ; Low temperature ; Photovoltaic cells ; Reproducibility ; Solar cells ; Surface roughness ; Titanium dioxide ; Zinc oxide</subject><ispartof>Nanoscale, 2018-01, Vol.10 (15), p.7218-7227</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-9ed0e755af8031a0fa5bc4131549d64086e1cc27e79bfb49d36c19baa45295f33</citedby><cites>FETCH-LOGICAL-c393t-9ed0e755af8031a0fa5bc4131549d64086e1cc27e79bfb49d36c19baa45295f33</cites><orcidid>0000-0002-7750-0770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29623316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Xuemei</creatorcontrib><creatorcontrib>Chen, Dong</creatorcontrib><creatorcontrib>Zhou, Junshuai</creatorcontrib><creatorcontrib>Zheng, Yan-Zhen</creatorcontrib><creatorcontrib>Tao, Xia</creatorcontrib><title>High crystallization of a multiple cation perovskite absorber for low-temperature stable ZnO solar cells with high-efficiency of over 20</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>ZnO as a promising electron transport layer (ETL) to TiO2 for perovskite solar cells (PSCs) has achieved a power conversion efficiency (PCE) of 18.9%; however, this is still lower than that obtained for TiO2-based PSCs (higher than 20%). Herein, we report the fabrication of high-efficiency methylammonium (MA) and Cs co-alloyed formamidinium (FA) triple cation perovskite based ZnO PSCs via delicate control of the cation compositions and annealing temperatures. By virtue of structural, morphological, spectral and electrochemical characterizations and analysis, we found that the incorporation of MA and Cs into FA perovskite enables the formation of a highly crystalline black phase perovskite with reduced surface roughness, which inhibits charge recombination and promotes electron transfer at the ZnO/perovskite/spiro-OMeTAD interfaces and hence improves Jsc and FF values of the cell. As a result, the ZnO PSC based on MA0.1FA0.75Cs0.15PbI3 annealed at 110 °C achieved a PCE as high as 20.09%, exceeding the previous highest efficiency recorded for ZnO ETL based PSCs. The optimized MA0.1FA0.75Cs0.15PbI3 material demonstrated excellent reproducibility and long-term cell durability under ambient conditions within 1000 h. Particularly, the incorporation of a small amount of Br into the triple cation perovskite, i.e., MA0.1FA0.75Cs0.15PbI2.9Br0.1 led to a further enhancement in PCE of up to 20.44%, which is comparable with the best-performing MA and Cs-containing FA-based lead halide TiO2 PSCs.</description><subject>Annealing</subject><subject>Cations</subject><subject>Crystallization</subject><subject>Efficiency</subject><subject>Electron transfer</subject><subject>Electron transport</subject><subject>Energy conversion efficiency</subject><subject>Low temperature</subject><subject>Photovoltaic cells</subject><subject>Reproducibility</subject><subject>Solar cells</subject><subject>Surface roughness</subject><subject>Titanium dioxide</subject><subject>Zinc oxide</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkcFO3DAQhi1UVGDphQeoLPVSIYXansRZH9GqQCVUpKq9cIkc77hrcOLFdkDbJ-Cx6-1SDpxmNPPN_4_0E3LC2RlnoL6Y-RgZ443Qe-RQsJpVAK1499rL-oAcpXTHmFQg4T05EEoKAC4PyfOV-72iJm5S1t67Pzq7MNJgqabD5LNbe6RmN1xjDI_p3mWkuk8h9hipDZH68FRlHMpa5ykiLUp9ubodb2gKXkdq0PtEn1xe0VVxq9BaZxyOZrM1Co9FR7Bjsm-1T_jhpc7Ir4uvPxdX1fXN5bfF-XVlQEGuFC4Ztk2j7ZwB18zqpjc1B97UailrNpfIjREttqq3fZmBNFz1WteNUI0FmJHPO911DA8TptwNLm0_1COGKXWCCaFULYEV9NMb9C5McSzfbam2BcWL84yc7igTQ0oRbbeObtBx03HWbfPpFvPvP_7lc17gjy-SUz_g8hX9Hwj8BX3CjB4</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Dong, Xuemei</creator><creator>Chen, Dong</creator><creator>Zhou, Junshuai</creator><creator>Zheng, Yan-Zhen</creator><creator>Tao, Xia</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7750-0770</orcidid></search><sort><creationdate>20180101</creationdate><title>High crystallization of a multiple cation perovskite absorber for low-temperature stable ZnO solar cells with high-efficiency of over 20</title><author>Dong, Xuemei ; Chen, Dong ; Zhou, Junshuai ; Zheng, Yan-Zhen ; Tao, Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-9ed0e755af8031a0fa5bc4131549d64086e1cc27e79bfb49d36c19baa45295f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Annealing</topic><topic>Cations</topic><topic>Crystallization</topic><topic>Efficiency</topic><topic>Electron transfer</topic><topic>Electron transport</topic><topic>Energy conversion efficiency</topic><topic>Low temperature</topic><topic>Photovoltaic cells</topic><topic>Reproducibility</topic><topic>Solar cells</topic><topic>Surface roughness</topic><topic>Titanium dioxide</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Xuemei</creatorcontrib><creatorcontrib>Chen, Dong</creatorcontrib><creatorcontrib>Zhou, Junshuai</creatorcontrib><creatorcontrib>Zheng, Yan-Zhen</creatorcontrib><creatorcontrib>Tao, Xia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Xuemei</au><au>Chen, Dong</au><au>Zhou, Junshuai</au><au>Zheng, Yan-Zhen</au><au>Tao, Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High crystallization of a multiple cation perovskite absorber for low-temperature stable ZnO solar cells with high-efficiency of over 20</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>10</volume><issue>15</issue><spage>7218</spage><epage>7227</epage><pages>7218-7227</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>ZnO as a promising electron transport layer (ETL) to TiO2 for perovskite solar cells (PSCs) has achieved a power conversion efficiency (PCE) of 18.9%; however, this is still lower than that obtained for TiO2-based PSCs (higher than 20%). Herein, we report the fabrication of high-efficiency methylammonium (MA) and Cs co-alloyed formamidinium (FA) triple cation perovskite based ZnO PSCs via delicate control of the cation compositions and annealing temperatures. By virtue of structural, morphological, spectral and electrochemical characterizations and analysis, we found that the incorporation of MA and Cs into FA perovskite enables the formation of a highly crystalline black phase perovskite with reduced surface roughness, which inhibits charge recombination and promotes electron transfer at the ZnO/perovskite/spiro-OMeTAD interfaces and hence improves Jsc and FF values of the cell. As a result, the ZnO PSC based on MA0.1FA0.75Cs0.15PbI3 annealed at 110 °C achieved a PCE as high as 20.09%, exceeding the previous highest efficiency recorded for ZnO ETL based PSCs. The optimized MA0.1FA0.75Cs0.15PbI3 material demonstrated excellent reproducibility and long-term cell durability under ambient conditions within 1000 h. Particularly, the incorporation of a small amount of Br into the triple cation perovskite, i.e., MA0.1FA0.75Cs0.15PbI2.9Br0.1 led to a further enhancement in PCE of up to 20.44%, which is comparable with the best-performing MA and Cs-containing FA-based lead halide TiO2 PSCs.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29623316</pmid><doi>10.1039/c8nr00152a</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7750-0770</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2018-01, Vol.10 (15), p.7218-7227
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2022994630
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Annealing
Cations
Crystallization
Efficiency
Electron transfer
Electron transport
Energy conversion efficiency
Low temperature
Photovoltaic cells
Reproducibility
Solar cells
Surface roughness
Titanium dioxide
Zinc oxide
title High crystallization of a multiple cation perovskite absorber for low-temperature stable ZnO solar cells with high-efficiency of over 20
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20crystallization%20of%20a%20multiple%20cation%20perovskite%20absorber%20for%20low-temperature%20stable%20ZnO%20solar%20cells%20with%20high-efficiency%20of%20over%2020&rft.jtitle=Nanoscale&rft.au=Dong,%20Xuemei&rft.date=2018-01-01&rft.volume=10&rft.issue=15&rft.spage=7218&rft.epage=7227&rft.pages=7218-7227&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr00152a&rft_dat=%3Cproquest_cross%3E2027739141%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-9ed0e755af8031a0fa5bc4131549d64086e1cc27e79bfb49d36c19baa45295f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2027739141&rft_id=info:pmid/29623316&rfr_iscdi=true