Loading…

Structure-based design and discovery of potent and selective KDM5 inhibitors

[Display omitted] •KDM5A/5B have been identified as potential anti-cancer drug targets.•Compound 33 is an orally available, potent inhibitor of KDM5A/5B with promising selectivity.•Compound 33 promotes H3K4me3 increases both in vitro and in vivo.•Compound 33 is a valuable tool compound to interrogat...

Full description

Saved in:
Bibliographic Details
Published in:Bioorganic & medicinal chemistry letters 2018-05, Vol.28 (9), p.1490-1494
Main Authors: Nie, Zhe, Shi, Lihong, Lai, Chon, O'Connell, Shawn M., Xu, Jiangchun, Stansfield, Ryan K., Hosfield, David J., Veal, James M., Stafford, Jeffrey A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] •KDM5A/5B have been identified as potential anti-cancer drug targets.•Compound 33 is an orally available, potent inhibitor of KDM5A/5B with promising selectivity.•Compound 33 promotes H3K4me3 increases both in vitro and in vivo.•Compound 33 is a valuable tool compound to interrogate the biology of KDM5A/5B. Histone lysine demethylases (KDMs) play a key role in epigenetic regulation and KDM5A and KDM5B have been identified as potential anti-cancer drug targets. Using structural information from known KDM4 and KDM5 inhibitors, a potent series of pyrazolylpyridines was designed. Structure-activity relationship (SAR) exploration resulted in the identification of compound 33, an orally available, potent inhibitor of KDM5A/5B with promising selectivity. Potent cellular inhibition as measured by levels of tri-methylated H3K4 was demonstrated with compound 33 in the breast cancer cell line ZR-75-1.
ISSN:0960-894X
1464-3405
DOI:10.1016/j.bmcl.2018.03.083