Loading…

Physiological and regulatory underpinnings of geographic variation in reptilian cold tolerance across a latitudinal cline

Understanding the mechanisms that produce variation in thermal performance is a key component to investigating climatic effects on evolution and adaptation. However, disentangling the effects of local adaptation and phenotypic plasticity in shaping patterns of geographic variation in natural populat...

Full description

Saved in:
Bibliographic Details
Published in:Molecular ecology 2018-05, Vol.27 (9), p.2243-2255
Main Authors: Campbell‐Staton, Shane C., Bare, Anna, Losos, Jonathan B., Edwards, Scott V., Cheviron, Zachary A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4540-894c6bc0c3c7679ac064db6fedd8d9c7129bcd9821ec81276b84ae5d96ca85643
cites cdi_FETCH-LOGICAL-c4540-894c6bc0c3c7679ac064db6fedd8d9c7129bcd9821ec81276b84ae5d96ca85643
container_end_page 2255
container_issue 9
container_start_page 2243
container_title Molecular ecology
container_volume 27
creator Campbell‐Staton, Shane C.
Bare, Anna
Losos, Jonathan B.
Edwards, Scott V.
Cheviron, Zachary A.
description Understanding the mechanisms that produce variation in thermal performance is a key component to investigating climatic effects on evolution and adaptation. However, disentangling the effects of local adaptation and phenotypic plasticity in shaping patterns of geographic variation in natural populations can prove challenging. Additionally, the physiological mechanisms that cause organismal dysfunction at extreme temperatures are still largely under debate. Using the green anole, Anolis carolinensis, we integrate measures of cold tolerance (CTmin), standard metabolic rate, heart size, blood lactate concentration and RNAseq data from liver tissue to investigate geographic variation in cold tolerance and its underlying mechanisms along a latitudinal cline. We found significant effects of thermal acclimation and latitude of origin on variation in cold tolerance. Increased cold tolerance correlates with decreased rates of oxygen consumption and blood lactate concentration (a proxy for oxygen limitation), suggesting elevated performance is associated with improved oxygen economy during cold exposure. Consistent with these results, co‐expression modules associated with blood lactate concentration are enriched for functions associated with blood circulation, coagulation and clotting. Expression of these modules correlates with thermal acclimation and latitude of origin. Our findings support the oxygen and capacity‐limited thermal tolerance hypothesis as a potential contributor to variation in reptilian cold tolerance. Moreover, differences in gene expression suggest regulation of the blood coagulation cascade may play an important role in reptilian cold tolerance and may be the target of natural selection in populations inhabiting colder environments. see also the Perspective by Card et al.
doi_str_mv 10.1111/mec.14580
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2023725570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2023725570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4540-894c6bc0c3c7679ac064db6fedd8d9c7129bcd9821ec81276b84ae5d96ca85643</originalsourceid><addsrcrecordid>eNp1kU1P3DAQhq0KVLa0h_6ByhKXcgj4K058RCtKkUDtoZV6i5yxNxh57WAnRfn3eFnaAxK-zOWZZzzzIvSZkjNa3vnWwhkVdUveoRXlsq6YEn8O0IooySpKWn6EPuR8TwjlrK7foyOmJOei5iu0_Lxbsos-Dg60xzoYnOwwez3FtOA5GJtGF4ILQ8Zxgwcbh6THOwf4r05OTy4G7ELpGSfnnQ4Yojd4it4mHcBiDSnmjDUuRjfNxoUyBbwL9iM63Gif7aeXeox-f7v8tf5e3fy4ul5f3FQgakGqVgmQPRDg0MhGaSBSmF5urDGtUdBQpnowqmXUQktZI_tWaFsbJUG3tRT8GH3de8cUH2abp27rMljvdbBxzh0jjDflLA0p6Mkr9D7Oqfx4R_Eik1zsqNM99bxasptuTG6r09JR0u3y6Eoe3XMehf3yYpz7rTX_yX8BFOB8Dzw6b5e3Td3t5XqvfALKNpaH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2035646340</pqid></control><display><type>article</type><title>Physiological and regulatory underpinnings of geographic variation in reptilian cold tolerance across a latitudinal cline</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Campbell‐Staton, Shane C. ; Bare, Anna ; Losos, Jonathan B. ; Edwards, Scott V. ; Cheviron, Zachary A.</creator><creatorcontrib>Campbell‐Staton, Shane C. ; Bare, Anna ; Losos, Jonathan B. ; Edwards, Scott V. ; Cheviron, Zachary A.</creatorcontrib><description>Understanding the mechanisms that produce variation in thermal performance is a key component to investigating climatic effects on evolution and adaptation. However, disentangling the effects of local adaptation and phenotypic plasticity in shaping patterns of geographic variation in natural populations can prove challenging. Additionally, the physiological mechanisms that cause organismal dysfunction at extreme temperatures are still largely under debate. Using the green anole, Anolis carolinensis, we integrate measures of cold tolerance (CTmin), standard metabolic rate, heart size, blood lactate concentration and RNAseq data from liver tissue to investigate geographic variation in cold tolerance and its underlying mechanisms along a latitudinal cline. We found significant effects of thermal acclimation and latitude of origin on variation in cold tolerance. Increased cold tolerance correlates with decreased rates of oxygen consumption and blood lactate concentration (a proxy for oxygen limitation), suggesting elevated performance is associated with improved oxygen economy during cold exposure. Consistent with these results, co‐expression modules associated with blood lactate concentration are enriched for functions associated with blood circulation, coagulation and clotting. Expression of these modules correlates with thermal acclimation and latitude of origin. Our findings support the oxygen and capacity‐limited thermal tolerance hypothesis as a potential contributor to variation in reptilian cold tolerance. Moreover, differences in gene expression suggest regulation of the blood coagulation cascade may play an important role in reptilian cold tolerance and may be the target of natural selection in populations inhabiting colder environments. see also the Perspective by Card et al.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.14580</identifier><identifier>PMID: 29633453</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Acclimation ; Acclimatization ; Adaptation ; Anolis ; Biological evolution ; Blood circulation ; Blood coagulation ; Blood levels ; Climate effects ; Clotting ; Coagulation ; Cold ; Cold tolerance ; Gene expression ; Heart rate ; Lactic acid ; Latitude ; Liver ; Metabolic rate ; metabolism ; Modules ; Natural populations ; Natural selection ; Oxygen ; Oxygen consumption ; Phenotypic plasticity ; Physiology ; Populations ; RNAseq ; Temperature tolerance ; Thermal stress ; thermal tolerance ; Variation</subject><ispartof>Molecular ecology, 2018-05, Vol.27 (9), p.2243-2255</ispartof><rights>2018 John Wiley &amp; Sons Ltd</rights><rights>2018 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2018 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4540-894c6bc0c3c7679ac064db6fedd8d9c7129bcd9821ec81276b84ae5d96ca85643</citedby><cites>FETCH-LOGICAL-c4540-894c6bc0c3c7679ac064db6fedd8d9c7129bcd9821ec81276b84ae5d96ca85643</cites><orcidid>0000-0001-9778-7302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29633453$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Campbell‐Staton, Shane C.</creatorcontrib><creatorcontrib>Bare, Anna</creatorcontrib><creatorcontrib>Losos, Jonathan B.</creatorcontrib><creatorcontrib>Edwards, Scott V.</creatorcontrib><creatorcontrib>Cheviron, Zachary A.</creatorcontrib><title>Physiological and regulatory underpinnings of geographic variation in reptilian cold tolerance across a latitudinal cline</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Understanding the mechanisms that produce variation in thermal performance is a key component to investigating climatic effects on evolution and adaptation. However, disentangling the effects of local adaptation and phenotypic plasticity in shaping patterns of geographic variation in natural populations can prove challenging. Additionally, the physiological mechanisms that cause organismal dysfunction at extreme temperatures are still largely under debate. Using the green anole, Anolis carolinensis, we integrate measures of cold tolerance (CTmin), standard metabolic rate, heart size, blood lactate concentration and RNAseq data from liver tissue to investigate geographic variation in cold tolerance and its underlying mechanisms along a latitudinal cline. We found significant effects of thermal acclimation and latitude of origin on variation in cold tolerance. Increased cold tolerance correlates with decreased rates of oxygen consumption and blood lactate concentration (a proxy for oxygen limitation), suggesting elevated performance is associated with improved oxygen economy during cold exposure. Consistent with these results, co‐expression modules associated with blood lactate concentration are enriched for functions associated with blood circulation, coagulation and clotting. Expression of these modules correlates with thermal acclimation and latitude of origin. Our findings support the oxygen and capacity‐limited thermal tolerance hypothesis as a potential contributor to variation in reptilian cold tolerance. Moreover, differences in gene expression suggest regulation of the blood coagulation cascade may play an important role in reptilian cold tolerance and may be the target of natural selection in populations inhabiting colder environments. see also the Perspective by Card et al.</description><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Adaptation</subject><subject>Anolis</subject><subject>Biological evolution</subject><subject>Blood circulation</subject><subject>Blood coagulation</subject><subject>Blood levels</subject><subject>Climate effects</subject><subject>Clotting</subject><subject>Coagulation</subject><subject>Cold</subject><subject>Cold tolerance</subject><subject>Gene expression</subject><subject>Heart rate</subject><subject>Lactic acid</subject><subject>Latitude</subject><subject>Liver</subject><subject>Metabolic rate</subject><subject>metabolism</subject><subject>Modules</subject><subject>Natural populations</subject><subject>Natural selection</subject><subject>Oxygen</subject><subject>Oxygen consumption</subject><subject>Phenotypic plasticity</subject><subject>Physiology</subject><subject>Populations</subject><subject>RNAseq</subject><subject>Temperature tolerance</subject><subject>Thermal stress</subject><subject>thermal tolerance</subject><subject>Variation</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kU1P3DAQhq0KVLa0h_6ByhKXcgj4K058RCtKkUDtoZV6i5yxNxh57WAnRfn3eFnaAxK-zOWZZzzzIvSZkjNa3vnWwhkVdUveoRXlsq6YEn8O0IooySpKWn6EPuR8TwjlrK7foyOmJOei5iu0_Lxbsos-Dg60xzoYnOwwez3FtOA5GJtGF4ILQ8Zxgwcbh6THOwf4r05OTy4G7ELpGSfnnQ4Yojd4it4mHcBiDSnmjDUuRjfNxoUyBbwL9iM63Gif7aeXeox-f7v8tf5e3fy4ul5f3FQgakGqVgmQPRDg0MhGaSBSmF5urDGtUdBQpnowqmXUQktZI_tWaFsbJUG3tRT8GH3de8cUH2abp27rMljvdbBxzh0jjDflLA0p6Mkr9D7Oqfx4R_Eik1zsqNM99bxasptuTG6r09JR0u3y6Eoe3XMehf3yYpz7rTX_yX8BFOB8Dzw6b5e3Td3t5XqvfALKNpaH</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Campbell‐Staton, Shane C.</creator><creator>Bare, Anna</creator><creator>Losos, Jonathan B.</creator><creator>Edwards, Scott V.</creator><creator>Cheviron, Zachary A.</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9778-7302</orcidid></search><sort><creationdate>201805</creationdate><title>Physiological and regulatory underpinnings of geographic variation in reptilian cold tolerance across a latitudinal cline</title><author>Campbell‐Staton, Shane C. ; Bare, Anna ; Losos, Jonathan B. ; Edwards, Scott V. ; Cheviron, Zachary A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4540-894c6bc0c3c7679ac064db6fedd8d9c7129bcd9821ec81276b84ae5d96ca85643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Adaptation</topic><topic>Anolis</topic><topic>Biological evolution</topic><topic>Blood circulation</topic><topic>Blood coagulation</topic><topic>Blood levels</topic><topic>Climate effects</topic><topic>Clotting</topic><topic>Coagulation</topic><topic>Cold</topic><topic>Cold tolerance</topic><topic>Gene expression</topic><topic>Heart rate</topic><topic>Lactic acid</topic><topic>Latitude</topic><topic>Liver</topic><topic>Metabolic rate</topic><topic>metabolism</topic><topic>Modules</topic><topic>Natural populations</topic><topic>Natural selection</topic><topic>Oxygen</topic><topic>Oxygen consumption</topic><topic>Phenotypic plasticity</topic><topic>Physiology</topic><topic>Populations</topic><topic>RNAseq</topic><topic>Temperature tolerance</topic><topic>Thermal stress</topic><topic>thermal tolerance</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campbell‐Staton, Shane C.</creatorcontrib><creatorcontrib>Bare, Anna</creatorcontrib><creatorcontrib>Losos, Jonathan B.</creatorcontrib><creatorcontrib>Edwards, Scott V.</creatorcontrib><creatorcontrib>Cheviron, Zachary A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campbell‐Staton, Shane C.</au><au>Bare, Anna</au><au>Losos, Jonathan B.</au><au>Edwards, Scott V.</au><au>Cheviron, Zachary A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physiological and regulatory underpinnings of geographic variation in reptilian cold tolerance across a latitudinal cline</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2018-05</date><risdate>2018</risdate><volume>27</volume><issue>9</issue><spage>2243</spage><epage>2255</epage><pages>2243-2255</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Understanding the mechanisms that produce variation in thermal performance is a key component to investigating climatic effects on evolution and adaptation. However, disentangling the effects of local adaptation and phenotypic plasticity in shaping patterns of geographic variation in natural populations can prove challenging. Additionally, the physiological mechanisms that cause organismal dysfunction at extreme temperatures are still largely under debate. Using the green anole, Anolis carolinensis, we integrate measures of cold tolerance (CTmin), standard metabolic rate, heart size, blood lactate concentration and RNAseq data from liver tissue to investigate geographic variation in cold tolerance and its underlying mechanisms along a latitudinal cline. We found significant effects of thermal acclimation and latitude of origin on variation in cold tolerance. Increased cold tolerance correlates with decreased rates of oxygen consumption and blood lactate concentration (a proxy for oxygen limitation), suggesting elevated performance is associated with improved oxygen economy during cold exposure. Consistent with these results, co‐expression modules associated with blood lactate concentration are enriched for functions associated with blood circulation, coagulation and clotting. Expression of these modules correlates with thermal acclimation and latitude of origin. Our findings support the oxygen and capacity‐limited thermal tolerance hypothesis as a potential contributor to variation in reptilian cold tolerance. Moreover, differences in gene expression suggest regulation of the blood coagulation cascade may play an important role in reptilian cold tolerance and may be the target of natural selection in populations inhabiting colder environments. see also the Perspective by Card et al.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>29633453</pmid><doi>10.1111/mec.14580</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9778-7302</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2018-05, Vol.27 (9), p.2243-2255
issn 0962-1083
1365-294X
language eng
recordid cdi_proquest_miscellaneous_2023725570
source Wiley-Blackwell Read & Publish Collection
subjects Acclimation
Acclimatization
Adaptation
Anolis
Biological evolution
Blood circulation
Blood coagulation
Blood levels
Climate effects
Clotting
Coagulation
Cold
Cold tolerance
Gene expression
Heart rate
Lactic acid
Latitude
Liver
Metabolic rate
metabolism
Modules
Natural populations
Natural selection
Oxygen
Oxygen consumption
Phenotypic plasticity
Physiology
Populations
RNAseq
Temperature tolerance
Thermal stress
thermal tolerance
Variation
title Physiological and regulatory underpinnings of geographic variation in reptilian cold tolerance across a latitudinal cline
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physiological%20and%20regulatory%20underpinnings%20of%20geographic%20variation%20in%20reptilian%20cold%20tolerance%20across%20a%20latitudinal%20cline&rft.jtitle=Molecular%20ecology&rft.au=Campbell%E2%80%90Staton,%20Shane%20C.&rft.date=2018-05&rft.volume=27&rft.issue=9&rft.spage=2243&rft.epage=2255&rft.pages=2243-2255&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.14580&rft_dat=%3Cproquest_cross%3E2023725570%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4540-894c6bc0c3c7679ac064db6fedd8d9c7129bcd9821ec81276b84ae5d96ca85643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2035646340&rft_id=info:pmid/29633453&rfr_iscdi=true