Loading…

The Role of Mitotic Cell-Substrate Adhesion Re-modeling in Animal Cell Division

Animal cells undergo a dramatic series of shape changes as they divide, which depend on re-modeling of cell-substrate adhesions. Here, we show that while focal adhesion complexes are disassembled during mitotic rounding, integrins remain in place. These integrin-rich contacts connect mitotic cells t...

Full description

Saved in:
Bibliographic Details
Published in:Developmental cell 2018-04, Vol.45 (1), p.132-145.e3
Main Authors: Dix, Christina L., Matthews, Helen K., Uroz, Marina, McLaren, Susannah, Wolf, Lucie, Heatley, Nicholas, Win, Zaw, Almada, Pedro, Henriques, Ricardo, Boutros, Michael, Trepat, Xavier, Baum, Buzz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Animal cells undergo a dramatic series of shape changes as they divide, which depend on re-modeling of cell-substrate adhesions. Here, we show that while focal adhesion complexes are disassembled during mitotic rounding, integrins remain in place. These integrin-rich contacts connect mitotic cells to the underlying substrate throughout mitosis, guide polarized cell migration following mitotic exit, and are functionally important, since adherent cells undergo division failure when removed from the substrate. Further, the ability of cells to re-spread along pre-existing adhesive contacts is essential for division in cells compromised in their ability to construct a RhoGEF-dependent (Ect2) actomyosin ring. As a result, following Ect2 depletion, cells fail to divide on small adhesive islands but successfully divide on larger patterns, as the connection between daughter cells narrows and severs as they migrate away from one another. In this way, regulated re-modeling of cell-substrate adhesions during mitotic rounding aids division in animal cells. [Display omitted] •Cells re-model adhesions as they round up upon entry into mitosis•These cell-substrate adhesions are essential for division in non-transformed cells•Adhesions can guide migration to divide cells with a compromised actomyosin ring Dix et al. show that the integrin-positive adhesive contacts that remain following mitotic rounding are essential for division in non-transformed adherent cells in culture. Further, these adhesion sites guide polarized daughter cell migration—a process that is sufficient to drive abscission in the absence of a visible contractile actomyosin ring.
ISSN:1534-5807
1878-1551
DOI:10.1016/j.devcel.2018.03.009