Loading…

Unimolecular reactivity of organotrifluoroborate anions, RBF3- , and their alkali metal cluster ions, M(RBF3 )2- (M = Na, K; R = CH3 , CH3 CH2 , CH3 (CH2 )3 , CH3 (CH2 )5 , c-C3 H5 , C6 H5 , C6 H5 CH2 , CH2 CHCH2 , CH2 CH, C6 H5 CO)

RATIONALEPotassium organotrifluoroborates (RBF3 K) are important reagents used in organic synthesis. Although mass spectrometry is commonly used to confirm their molecular formulae, the gas-phase fragmentation reactions of organotrifluoroborates and their alkali metal cluster ions have not been prev...

Full description

Saved in:
Bibliographic Details
Published in:Rapid communications in mass spectrometry 2018-07, Vol.32 (13), p.1045-1052
Main Authors: Bathie, Fiona L B, Bowen, Chris J, Hutton, Craig A, O'Hair, Richard A J
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:RATIONALEPotassium organotrifluoroborates (RBF3 K) are important reagents used in organic synthesis. Although mass spectrometry is commonly used to confirm their molecular formulae, the gas-phase fragmentation reactions of organotrifluoroborates and their alkali metal cluster ions have not been previously reported.METHODSNegative-ion mode electrospray ionization (ESI) together with collision-induced dissociation (CID) using a triple quadrupole mass spectrometer were used to examine the fragmentation pathways for RBF3- (where R = CH3 , CH3 CH2 , CH3 (CH2 )3 , CH3 (CH2 )5 , c-C3 H5 , C6 H5 , C6 H5 CH2 , CH2 CHCH2 , CH2 CH, C6 H5 CO) and M(RBF3 )2- (M = Na, K), while density functional theory (DFT) calculations at the M06/def2-TZVP level were used to examine the structures and energies associated with fragmentation reactions for R = Me and Ph.RESULTSUpon CID, preferentially elimination of HF occurs for RBF3- ions for systems where R = an alkyl anion, whereas R- formation is favoured when R = a stabilized anion. At higher collision energies loss of F- and additional HF losses are sometimes observed. Upon CID of M(RBF3 )2- , formation of RBF3- is the preferred pathway with some fluoride transfer observed only when M = Na. The DFT-calculated relative thermochemistry for competing fragmentation pathways is consistent with the experiments.CONCLUSIONSThe main fragmentation pathways of RBF3- are HF elimination and/or R- loss. This contrasts with the fragmentation reactions of other organometallate anions, where reductive elimination, beta hydride transfer and bond homolysis are often observed. The presence of fluoride transfer upon CID of Na(RBF3 )2- but not K(RBF3 )2- is in agreement with the known fluoride affinities of Na+ and K+ and can be rationalized by Pearson's HSAB theory.
ISSN:1097-0231
DOI:10.1002/rcm.8134