Loading…

Efficient Transport Networks in a Dual Electron/Lithium-Conducting Polymeric Composite for Electrochemical Applications

In this work, an all-functional polymer material composed of the electrically conductive poly­(3,4-ethylenedioxythiophene):poly­(4-styrenesulfonic acid) (PEDOT:PSS) and lithium-conducting poly­(ethylene oxide) (PEO) was developed to form a dual conductor for three-dimensional electrodes in electroch...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2018-05, Vol.10 (18), p.15681-15690
Main Authors: McDonald, Michael B, Hammond, Paula T
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a370t-2cf700414d62b683a2bb28b5396b168a9eccf2a9e4355a5ed48b7c4acf62341a3
cites cdi_FETCH-LOGICAL-a370t-2cf700414d62b683a2bb28b5396b168a9eccf2a9e4355a5ed48b7c4acf62341a3
container_end_page 15690
container_issue 18
container_start_page 15681
container_title ACS applied materials & interfaces
container_volume 10
creator McDonald, Michael B
Hammond, Paula T
description In this work, an all-functional polymer material composed of the electrically conductive poly­(3,4-ethylenedioxythiophene):poly­(4-styrenesulfonic acid) (PEDOT:PSS) and lithium-conducting poly­(ethylene oxide) (PEO) was developed to form a dual conductor for three-dimensional electrodes in electrochemical applications. The composite exhibits enhanced ionic conductivity (∼10–4 S cm–1) and, counterintuitively, electronic conductivity (∼45 S cm–1) with increasing PEO proportion, optimal at a monomer ratio of 20:1 PEO:PEDOT. Microscopy reveals a unique morphology, where PSS interacts favorably with PEO, destabilizing PEDOT to associate into highly branched, interconnected networks that allow for more efficient electronic transport despite relatively low concentrations. Thermal and X-ray techniques affirm that the PSS–PEO domain suppresses crystallinity, explaining the high ionic conductivity. Electrochemical experiments in lithium cell environments indicate stability as a function of cycling and improved overpotential due to dual transport characteristics despite known issues with both individual components.
doi_str_mv 10.1021/acsami.8b01519
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2025799197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2025799197</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-2cf700414d62b683a2bb28b5396b168a9eccf2a9e4355a5ed48b7c4acf62341a3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EoqWwMiKPCCmt7dhJPFalfEgVMJQ5chyHuiR2sB1V_fcEpe3G9O5w7pHeBeAWoylGBM-E9KLR06xAmGF-BsaYUxplhJHzU6Z0BK683yKUxASxSzAiPGFZwskY7JZVpaVWJsC1E8a31gX4psLOum8PtYECPnaihstayeCsma102OiuiRbWlJ0M2nzBD1vvG-W0hAvbtNbroGBl3bEjN6rRsnfM27buQ9DW-GtwUYnaq5vDnYDPp-V68RKt3p9fF_NVJOIUhYjIKkWIYlompEiyWJCiIFnBYp4UOMkEV1JWpD80ZkwwVdKsSCUVskpITLGIJ-B-8LbO_nTKh7zRXqq6FkbZzucEEZZyjnnao9MBlc5671SVt043wu1zjPK_sfNh7Pwwdl-4O7i7olHlCT-u2wMPA9AX863tnOlf_c_2C_YljA8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025799197</pqid></control><display><type>article</type><title>Efficient Transport Networks in a Dual Electron/Lithium-Conducting Polymeric Composite for Electrochemical Applications</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>McDonald, Michael B ; Hammond, Paula T</creator><creatorcontrib>McDonald, Michael B ; Hammond, Paula T</creatorcontrib><description>In this work, an all-functional polymer material composed of the electrically conductive poly­(3,4-ethylenedioxythiophene):poly­(4-styrenesulfonic acid) (PEDOT:PSS) and lithium-conducting poly­(ethylene oxide) (PEO) was developed to form a dual conductor for three-dimensional electrodes in electrochemical applications. The composite exhibits enhanced ionic conductivity (∼10–4 S cm–1) and, counterintuitively, electronic conductivity (∼45 S cm–1) with increasing PEO proportion, optimal at a monomer ratio of 20:1 PEO:PEDOT. Microscopy reveals a unique morphology, where PSS interacts favorably with PEO, destabilizing PEDOT to associate into highly branched, interconnected networks that allow for more efficient electronic transport despite relatively low concentrations. Thermal and X-ray techniques affirm that the PSS–PEO domain suppresses crystallinity, explaining the high ionic conductivity. Electrochemical experiments in lithium cell environments indicate stability as a function of cycling and improved overpotential due to dual transport characteristics despite known issues with both individual components.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b01519</identifier><identifier>PMID: 29658692</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2018-05, Vol.10 (18), p.15681-15690</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-2cf700414d62b683a2bb28b5396b168a9eccf2a9e4355a5ed48b7c4acf62341a3</citedby><cites>FETCH-LOGICAL-a370t-2cf700414d62b683a2bb28b5396b168a9eccf2a9e4355a5ed48b7c4acf62341a3</cites><orcidid>0000-0002-3629-7526 ; 0000-0002-9835-192X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29658692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McDonald, Michael B</creatorcontrib><creatorcontrib>Hammond, Paula T</creatorcontrib><title>Efficient Transport Networks in a Dual Electron/Lithium-Conducting Polymeric Composite for Electrochemical Applications</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>In this work, an all-functional polymer material composed of the electrically conductive poly­(3,4-ethylenedioxythiophene):poly­(4-styrenesulfonic acid) (PEDOT:PSS) and lithium-conducting poly­(ethylene oxide) (PEO) was developed to form a dual conductor for three-dimensional electrodes in electrochemical applications. The composite exhibits enhanced ionic conductivity (∼10–4 S cm–1) and, counterintuitively, electronic conductivity (∼45 S cm–1) with increasing PEO proportion, optimal at a monomer ratio of 20:1 PEO:PEDOT. Microscopy reveals a unique morphology, where PSS interacts favorably with PEO, destabilizing PEDOT to associate into highly branched, interconnected networks that allow for more efficient electronic transport despite relatively low concentrations. Thermal and X-ray techniques affirm that the PSS–PEO domain suppresses crystallinity, explaining the high ionic conductivity. Electrochemical experiments in lithium cell environments indicate stability as a function of cycling and improved overpotential due to dual transport characteristics despite known issues with both individual components.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EoqWwMiKPCCmt7dhJPFalfEgVMJQ5chyHuiR2sB1V_fcEpe3G9O5w7pHeBeAWoylGBM-E9KLR06xAmGF-BsaYUxplhJHzU6Z0BK683yKUxASxSzAiPGFZwskY7JZVpaVWJsC1E8a31gX4psLOum8PtYECPnaihstayeCsma102OiuiRbWlJ0M2nzBD1vvG-W0hAvbtNbroGBl3bEjN6rRsnfM27buQ9DW-GtwUYnaq5vDnYDPp-V68RKt3p9fF_NVJOIUhYjIKkWIYlompEiyWJCiIFnBYp4UOMkEV1JWpD80ZkwwVdKsSCUVskpITLGIJ-B-8LbO_nTKh7zRXqq6FkbZzucEEZZyjnnao9MBlc5671SVt043wu1zjPK_sfNh7Pwwdl-4O7i7olHlCT-u2wMPA9AX863tnOlf_c_2C_YljA8</recordid><startdate>20180509</startdate><enddate>20180509</enddate><creator>McDonald, Michael B</creator><creator>Hammond, Paula T</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3629-7526</orcidid><orcidid>https://orcid.org/0000-0002-9835-192X</orcidid></search><sort><creationdate>20180509</creationdate><title>Efficient Transport Networks in a Dual Electron/Lithium-Conducting Polymeric Composite for Electrochemical Applications</title><author>McDonald, Michael B ; Hammond, Paula T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-2cf700414d62b683a2bb28b5396b168a9eccf2a9e4355a5ed48b7c4acf62341a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McDonald, Michael B</creatorcontrib><creatorcontrib>Hammond, Paula T</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McDonald, Michael B</au><au>Hammond, Paula T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Transport Networks in a Dual Electron/Lithium-Conducting Polymeric Composite for Electrochemical Applications</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-05-09</date><risdate>2018</risdate><volume>10</volume><issue>18</issue><spage>15681</spage><epage>15690</epage><pages>15681-15690</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>In this work, an all-functional polymer material composed of the electrically conductive poly­(3,4-ethylenedioxythiophene):poly­(4-styrenesulfonic acid) (PEDOT:PSS) and lithium-conducting poly­(ethylene oxide) (PEO) was developed to form a dual conductor for three-dimensional electrodes in electrochemical applications. The composite exhibits enhanced ionic conductivity (∼10–4 S cm–1) and, counterintuitively, electronic conductivity (∼45 S cm–1) with increasing PEO proportion, optimal at a monomer ratio of 20:1 PEO:PEDOT. Microscopy reveals a unique morphology, where PSS interacts favorably with PEO, destabilizing PEDOT to associate into highly branched, interconnected networks that allow for more efficient electronic transport despite relatively low concentrations. Thermal and X-ray techniques affirm that the PSS–PEO domain suppresses crystallinity, explaining the high ionic conductivity. Electrochemical experiments in lithium cell environments indicate stability as a function of cycling and improved overpotential due to dual transport characteristics despite known issues with both individual components.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29658692</pmid><doi>10.1021/acsami.8b01519</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3629-7526</orcidid><orcidid>https://orcid.org/0000-0002-9835-192X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-05, Vol.10 (18), p.15681-15690
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2025799197
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Efficient Transport Networks in a Dual Electron/Lithium-Conducting Polymeric Composite for Electrochemical Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Transport%20Networks%20in%20a%20Dual%20Electron/Lithium-Conducting%20Polymeric%20Composite%20for%20Electrochemical%20Applications&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=McDonald,%20Michael%20B&rft.date=2018-05-09&rft.volume=10&rft.issue=18&rft.spage=15681&rft.epage=15690&rft.pages=15681-15690&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b01519&rft_dat=%3Cproquest_cross%3E2025799197%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a370t-2cf700414d62b683a2bb28b5396b168a9eccf2a9e4355a5ed48b7c4acf62341a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2025799197&rft_id=info:pmid/29658692&rfr_iscdi=true