Loading…
TGFβ1-induced Amelotin gene expression is downregulated by Bax expression in mouse gingival epithelial cells
Amelotin (AMTN) is induced upon initiation of apoptosis by transforming growth factor beta1 (TGFβ1) and is mediated by Smad3 in gingival epithelial cells (GE1 cells). This upregulation of AMTN gene expression is temporary, and the mechanism responsible is still unclear. The present study investigate...
Saved in:
Published in: | Journal of Oral Science 2018, Vol.60(2), pp.232-241 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Amelotin (AMTN) is induced upon initiation of apoptosis by transforming growth factor beta1 (TGFβ1) and is mediated by Smad3 in gingival epithelial cells (GE1 cells). This upregulation of AMTN gene expression is temporary, and the mechanism responsible is still unclear. The present study investigated the transcriptional downregulation of TGFβ1-induced AMTN gene expression in GE1 cells during the progression of apoptosis. To examine time-dependent changes in the levels of AMTN, Smad3 and Bax mRNA induced by TGFβ1, real-time PCR analyses were performed. Immunocytochemistry was carried out to detect the expression of Smad3 and Bax. Transient transfection analyses were performed using mouse AMTN gene promoter constructs of various lengths including Smad response elements (SBEs), in the presence or absence of TGFβ1. Changes in Smad3 binding to SBEs resulting from overexpression of Bax were examined using ChIP assays. Overexpression of Bax dramatically downregulated the levels of TGFβ1-induced AMTN mRNA and transcription of the AMTN gene. Smad3 binding to SBEs in the mouse AMTN gene promoter was induced by overexpression of Smad3 or TGFβ1, and this was inhibited by Bax overexpression. These results show that the levels of AMTN mRNA induced by TGFβ1 and Smad3 are decreased by robust expression of Bax in gingival epithelial cells. |
---|---|
ISSN: | 1343-4934 1880-4926 |
DOI: | 10.2334/josnusd.17-0271 |