Loading…

Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard NASA's Terra satellite measures multispectral thermal infrared (TIR) emission from the Earth's surface to space. Based on analysis of TIR spectral properties of typical rocks on the Earth, several mineralogic...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing of environment 2005-11, Vol.99 (1), p.127-139
Main Authors: Ninomiya, Yoshiki, Fu, Bihong, Cudahy, Thomas J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a351t-5825ff308e88343515a9decd539956bbc6993065622cc02a6ec1de69ef4a39923
cites cdi_FETCH-LOGICAL-a351t-5825ff308e88343515a9decd539956bbc6993065622cc02a6ec1de69ef4a39923
container_end_page 139
container_issue 1
container_start_page 127
container_title Remote sensing of environment
container_volume 99
creator Ninomiya, Yoshiki
Fu, Bihong
Cudahy, Thomas J.
description The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard NASA's Terra satellite measures multispectral thermal infrared (TIR) emission from the Earth's surface to space. Based on analysis of TIR spectral properties of typical rocks on the Earth, several mineralogic indices including the Quartz Index (QI), Carbonate Index (CI) and Mafic Index (MI) for detecting mineralogic or chemical composition of quartzose, carbonate and silicate rocks with ASTER-TIR data are proposed. These indices are applied to the ASTER-TIR data scenes for selected study areas in China and Australia. The results show that ASTER-TIR can discriminate quartz and carbonate rocks as well as mafic–ultramafic rocks, even with atmospherically uncorrected radiance-at-sensor data. Lithologic interpretations agree well with published geologic data and field observations. The mineralogic indices applied to ASTER-TIR provide one unified approach for lithologic mapping in arid and semi-arid regions of the Earth.
doi_str_mv 10.1016/j.rse.2005.06.009
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20266197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425705002142</els_id><sourcerecordid>7503564</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-5825ff308e88343515a9decd539956bbc6993065622cc02a6ec1de69ef4a39923</originalsourceid><addsrcrecordid>eNp9kcFq3DAQhkVpodskD9CbTqU92B3JlmzR05Js00IgsNmehVYaJ1psayt5U3LLgyQvlyeJzObc02jE_3_DzE_IZwYlAya_78qYsOQAogRZAqh3ZMHaRhXQQP2eLACquqi5aD6STyntAJhoG7YgTxc4oZ38eEt7P92FPtw-0H_5RZfu3owWHb3ZG4vbEEekmzuMg-npavAp-TBSMzq6xq6fEbldG-fDkImRfl3ebFbrb3Q49JNP-yyI2Ti9AfzYRRMz_OXxKWbTPKkwU5FwTCG-PD5TZyZzSj50pk949lZPyJ-fq835r-Lq-vL3-fKqMJVgUyFaLrqughbbtqrzlzDKoXWiUkrI7dZKpSqQQnJuLXAj0TKHUmFXmyzh1Qn5cuTuY_h7wDTpvJ_FvjcjhkPSHLiUTDVZyI5CG0NKETu9j34w8UEz0HMOeqdzDnrOQYPUOYfs-XH0YN7g3mPUyXqcL-tjvop2wf_H_QoRmpUp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20266197</pqid></control><display><type>article</type><title>Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Ninomiya, Yoshiki ; Fu, Bihong ; Cudahy, Thomas J.</creator><creatorcontrib>Ninomiya, Yoshiki ; Fu, Bihong ; Cudahy, Thomas J.</creatorcontrib><description>The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard NASA's Terra satellite measures multispectral thermal infrared (TIR) emission from the Earth's surface to space. Based on analysis of TIR spectral properties of typical rocks on the Earth, several mineralogic indices including the Quartz Index (QI), Carbonate Index (CI) and Mafic Index (MI) for detecting mineralogic or chemical composition of quartzose, carbonate and silicate rocks with ASTER-TIR data are proposed. These indices are applied to the ASTER-TIR data scenes for selected study areas in China and Australia. The results show that ASTER-TIR can discriminate quartz and carbonate rocks as well as mafic–ultramafic rocks, even with atmospherically uncorrected radiance-at-sensor data. Lithologic interpretations agree well with published geologic data and field observations. The mineralogic indices applied to ASTER-TIR provide one unified approach for lithologic mapping in arid and semi-arid regions of the Earth.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2005.06.009</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>ASTER ; Australia ; Carbonate ; Chemical composition ; China, People's Rep ; Emissions ; Emissivity spectra ; Felsic ; Geology ; Lithologic mapping ; lithology ; Mafic ; Mapping ; Mineralogic indices ; Ophiolite ; Q1 ; Q2 ; Q3 ; Quartz ; Remote sensing ; Satellites ; Semiarid environments ; Silicate ; Thermal infrared</subject><ispartof>Remote sensing of environment, 2005-11, Vol.99 (1), p.127-139</ispartof><rights>2005 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-5825ff308e88343515a9decd539956bbc6993065622cc02a6ec1de69ef4a39923</citedby><cites>FETCH-LOGICAL-a351t-5825ff308e88343515a9decd539956bbc6993065622cc02a6ec1de69ef4a39923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ninomiya, Yoshiki</creatorcontrib><creatorcontrib>Fu, Bihong</creatorcontrib><creatorcontrib>Cudahy, Thomas J.</creatorcontrib><title>Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data</title><title>Remote sensing of environment</title><description>The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard NASA's Terra satellite measures multispectral thermal infrared (TIR) emission from the Earth's surface to space. Based on analysis of TIR spectral properties of typical rocks on the Earth, several mineralogic indices including the Quartz Index (QI), Carbonate Index (CI) and Mafic Index (MI) for detecting mineralogic or chemical composition of quartzose, carbonate and silicate rocks with ASTER-TIR data are proposed. These indices are applied to the ASTER-TIR data scenes for selected study areas in China and Australia. The results show that ASTER-TIR can discriminate quartz and carbonate rocks as well as mafic–ultramafic rocks, even with atmospherically uncorrected radiance-at-sensor data. Lithologic interpretations agree well with published geologic data and field observations. The mineralogic indices applied to ASTER-TIR provide one unified approach for lithologic mapping in arid and semi-arid regions of the Earth.</description><subject>ASTER</subject><subject>Australia</subject><subject>Carbonate</subject><subject>Chemical composition</subject><subject>China, People's Rep</subject><subject>Emissions</subject><subject>Emissivity spectra</subject><subject>Felsic</subject><subject>Geology</subject><subject>Lithologic mapping</subject><subject>lithology</subject><subject>Mafic</subject><subject>Mapping</subject><subject>Mineralogic indices</subject><subject>Ophiolite</subject><subject>Q1</subject><subject>Q2</subject><subject>Q3</subject><subject>Quartz</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Semiarid environments</subject><subject>Silicate</subject><subject>Thermal infrared</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kcFq3DAQhkVpodskD9CbTqU92B3JlmzR05Js00IgsNmehVYaJ1psayt5U3LLgyQvlyeJzObc02jE_3_DzE_IZwYlAya_78qYsOQAogRZAqh3ZMHaRhXQQP2eLACquqi5aD6STyntAJhoG7YgTxc4oZ38eEt7P92FPtw-0H_5RZfu3owWHb3ZG4vbEEekmzuMg-npavAp-TBSMzq6xq6fEbldG-fDkImRfl3ebFbrb3Q49JNP-yyI2Ti9AfzYRRMz_OXxKWbTPKkwU5FwTCG-PD5TZyZzSj50pk949lZPyJ-fq835r-Lq-vL3-fKqMJVgUyFaLrqughbbtqrzlzDKoXWiUkrI7dZKpSqQQnJuLXAj0TKHUmFXmyzh1Qn5cuTuY_h7wDTpvJ_FvjcjhkPSHLiUTDVZyI5CG0NKETu9j34w8UEz0HMOeqdzDnrOQYPUOYfs-XH0YN7g3mPUyXqcL-tjvop2wf_H_QoRmpUp</recordid><startdate>20051115</startdate><enddate>20051115</enddate><creator>Ninomiya, Yoshiki</creator><creator>Fu, Bihong</creator><creator>Cudahy, Thomas J.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20051115</creationdate><title>Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data</title><author>Ninomiya, Yoshiki ; Fu, Bihong ; Cudahy, Thomas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-5825ff308e88343515a9decd539956bbc6993065622cc02a6ec1de69ef4a39923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>ASTER</topic><topic>Australia</topic><topic>Carbonate</topic><topic>Chemical composition</topic><topic>China, People's Rep</topic><topic>Emissions</topic><topic>Emissivity spectra</topic><topic>Felsic</topic><topic>Geology</topic><topic>Lithologic mapping</topic><topic>lithology</topic><topic>Mafic</topic><topic>Mapping</topic><topic>Mineralogic indices</topic><topic>Ophiolite</topic><topic>Q1</topic><topic>Q2</topic><topic>Q3</topic><topic>Quartz</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Semiarid environments</topic><topic>Silicate</topic><topic>Thermal infrared</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ninomiya, Yoshiki</creatorcontrib><creatorcontrib>Fu, Bihong</creatorcontrib><creatorcontrib>Cudahy, Thomas J.</creatorcontrib><collection>CrossRef</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ninomiya, Yoshiki</au><au>Fu, Bihong</au><au>Cudahy, Thomas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data</atitle><jtitle>Remote sensing of environment</jtitle><date>2005-11-15</date><risdate>2005</risdate><volume>99</volume><issue>1</issue><spage>127</spage><epage>139</epage><pages>127-139</pages><issn>0034-4257</issn><eissn>1879-0704</eissn><abstract>The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard NASA's Terra satellite measures multispectral thermal infrared (TIR) emission from the Earth's surface to space. Based on analysis of TIR spectral properties of typical rocks on the Earth, several mineralogic indices including the Quartz Index (QI), Carbonate Index (CI) and Mafic Index (MI) for detecting mineralogic or chemical composition of quartzose, carbonate and silicate rocks with ASTER-TIR data are proposed. These indices are applied to the ASTER-TIR data scenes for selected study areas in China and Australia. The results show that ASTER-TIR can discriminate quartz and carbonate rocks as well as mafic–ultramafic rocks, even with atmospherically uncorrected radiance-at-sensor data. Lithologic interpretations agree well with published geologic data and field observations. The mineralogic indices applied to ASTER-TIR provide one unified approach for lithologic mapping in arid and semi-arid regions of the Earth.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2005.06.009</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-4257
ispartof Remote sensing of environment, 2005-11, Vol.99 (1), p.127-139
issn 0034-4257
1879-0704
language eng
recordid cdi_proquest_miscellaneous_20266197
source ScienceDirect Freedom Collection 2022-2024
subjects ASTER
Australia
Carbonate
Chemical composition
China, People's Rep
Emissions
Emissivity spectra
Felsic
Geology
Lithologic mapping
lithology
Mafic
Mapping
Mineralogic indices
Ophiolite
Q1
Q2
Q3
Quartz
Remote sensing
Satellites
Semiarid environments
Silicate
Thermal infrared
title Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20lithology%20with%20Advanced%20Spaceborne%20Thermal%20Emission%20and%20Reflection%20Radiometer%20(ASTER)%20multispectral%20thermal%20infrared%20%E2%80%9Cradiance-at-sensor%E2%80%9D%20data&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Ninomiya,%20Yoshiki&rft.date=2005-11-15&rft.volume=99&rft.issue=1&rft.spage=127&rft.epage=139&rft.pages=127-139&rft.issn=0034-4257&rft.eissn=1879-0704&rft_id=info:doi/10.1016/j.rse.2005.06.009&rft_dat=%3Cproquest_cross%3E7503564%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a351t-5825ff308e88343515a9decd539956bbc6993065622cc02a6ec1de69ef4a39923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20266197&rft_id=info:pmid/&rfr_iscdi=true