Loading…

Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: COSMIC observations of wave mean flow interactions

Temperature profiles derived from Constellation Observing System for Meteorology, Ionosphere and Climate Global Positioning System Radio Occultation satellite constellation data are used to study equatorial gravity wave potential energy associated with waves having vertical wavelengths of less than...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres 2008-12, Vol.113 (D24), p.n/a
Main Authors: Alexander, S. P., Tsuda, T., Kawatani, Y., Takahashi, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Temperature profiles derived from Constellation Observing System for Meteorology, Ionosphere and Climate Global Positioning System Radio Occultation satellite constellation data are used to study equatorial gravity wave potential energy associated with waves having vertical wavelengths of less than 7 km and their interaction with the background quasi‐biennial oscillation (QBO) wind. The data are binned into grids of size 20° in longitude and 5° in latitude. Results show evidence of vertically propagating convectively generated gravity waves interacting with the background mean flow. Enhancements in potential energy around the descending 0 m s−1 QBO eastward shear phase line are observed. Equatorially trapped Kelvin waves and Mixed Rossby Gravity Waves with zonal wave numbers s ≤ 9 are obtained by bandpass filtering wave number‐frequency temperature spectra. Their temporal, spatial and vertical structures, propagation and wave‐mean flow interactions are examined with respect to the background mean flow. Equatorial waves observed by COSMIC are compared with those seen in OLR data, with differences discussed.
ISSN:0148-0227
2169-897X
2156-2202
2169-8996
DOI:10.1029/2008JD010039