Loading…
Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: COSMIC observations of wave mean flow interactions
Temperature profiles derived from Constellation Observing System for Meteorology, Ionosphere and Climate Global Positioning System Radio Occultation satellite constellation data are used to study equatorial gravity wave potential energy associated with waves having vertical wavelengths of less than...
Saved in:
Published in: | Journal of Geophysical Research: Atmospheres 2008-12, Vol.113 (D24), p.n/a |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Temperature profiles derived from Constellation Observing System for Meteorology, Ionosphere and Climate Global Positioning System Radio Occultation satellite constellation data are used to study equatorial gravity wave potential energy associated with waves having vertical wavelengths of less than 7 km and their interaction with the background quasi‐biennial oscillation (QBO) wind. The data are binned into grids of size 20° in longitude and 5° in latitude. Results show evidence of vertically propagating convectively generated gravity waves interacting with the background mean flow. Enhancements in potential energy around the descending 0 m s−1 QBO eastward shear phase line are observed. Equatorially trapped Kelvin waves and Mixed Rossby Gravity Waves with zonal wave numbers s ≤ 9 are obtained by bandpass filtering wave number‐frequency temperature spectra. Their temporal, spatial and vertical structures, propagation and wave‐mean flow interactions are examined with respect to the background mean flow. Equatorial waves observed by COSMIC are compared with those seen in OLR data, with differences discussed. |
---|---|
ISSN: | 0148-0227 2169-897X 2156-2202 2169-8996 |
DOI: | 10.1029/2008JD010039 |