Loading…
Translational regulation of ribosomal protein S15 drives characteristic patterns of protein‐mRNA epistasis
Do coding and regulatory segments of a gene co‐evolve with each‐other? Seeking answers to this question, here we analyze the case of Escherichia coli ribosomal protein S15, that represses its own translation by specifically binding its messenger RNA (rpsO mRNA) and stabilizing a pseudoknot structure...
Saved in:
Published in: | Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2018-08, Vol.86 (8), p.827-832 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3578-206d01cc90b583767dded78106e860a9758c7523c01320353daab3d681bf97ac3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3578-206d01cc90b583767dded78106e860a9758c7523c01320353daab3d681bf97ac3 |
container_end_page | 832 |
container_issue | 8 |
container_start_page | 827 |
container_title | Proteins, structure, function, and bioinformatics |
container_volume | 86 |
creator | Mallik, Saurav Basu, Sudipto Hait, Suman Kundu, Sudip |
description | Do coding and regulatory segments of a gene co‐evolve with each‐other? Seeking answers to this question, here we analyze the case of Escherichia coli ribosomal protein S15, that represses its own translation by specifically binding its messenger RNA (rpsO mRNA) and stabilizing a pseudoknot structure at the upstream untranslated region, thus trapping the ribosome into an incomplete translation initiation complex. In the absence of S15, ribosomal protein S1 recognizes rpsO and promotes translation by melting this very pseudoknot. We employ a robust statistical method to detect signatures of positive epistasis between residue site pairs and find that biophysical constraints of translational regulation (S15‐rpsO and S1‐rpsO recognition, S15‐mediated rpsO structural rearrangement, and S1‐mediated melting) are strong predictors of positive epistasis. Transforming the epistatic pairs into a network, we find that signatures of two different, but interconnected regulatory cascades are imprinted in the sequence‐space and can be captured in terms of two dense network modules that are sparsely connected to each other. This network topology further reflects a general principle of how functionally coupled components of biological networks are interconnected. These results depict a model case, where translational regulation drives characteristic residue‐level epistasis—not only between a protein and its own mRNA but also between a protein and the mRNA of an entirely different protein. |
doi_str_mv | 10.1002/prot.25518 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2028947958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2028947958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3578-206d01cc90b583767dded78106e860a9758c7523c01320353daab3d681bf97ac3</originalsourceid><addsrcrecordid>eNp9kUtOwzAQQC0EoqWw4QAoEhuElDKO69heVhU_qaKolHXkOC64yqfYCag7jsAZOQkOKSxYsPLYevPGM4PQMYYhBogu1raqhxGlmO-gPgbBQsBktIv6wDkLCeW0hw6cWwFALEi8j3qRiJkYAe6jfGFl6XJZm6qUeWD1U9NdgmoZWJNWrir8e1tCmzJ4wDTIrHnVLlDP0kpVa2tcbVSwlrWPS9fmbenP949ifjcO9Noj0hl3iPaWMnf6aHsO0OPV5WJyE05n17eT8TRUhDIeRhBngJUSkFJOWMyyTGeMY4g1j0EKRrliNCLKtxkBoSSTMiVZzHG6FEwqMkBnndd_5KXRrk4K45TOc1nqqnFJBBEXIya8fYBO_6CrqrF-FC3FR5wC5tRT5x2lbOWc1ctkbU0h7SbBkLQ7SNqWk-8dePhkq2zSQme_6M_QPYA74M3kevOPKrmfzxad9AsuMJM9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084850185</pqid></control><display><type>article</type><title>Translational regulation of ribosomal protein S15 drives characteristic patterns of protein‐mRNA epistasis</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Mallik, Saurav ; Basu, Sudipto ; Hait, Suman ; Kundu, Sudip</creator><creatorcontrib>Mallik, Saurav ; Basu, Sudipto ; Hait, Suman ; Kundu, Sudip</creatorcontrib><description>Do coding and regulatory segments of a gene co‐evolve with each‐other? Seeking answers to this question, here we analyze the case of Escherichia coli ribosomal protein S15, that represses its own translation by specifically binding its messenger RNA (rpsO mRNA) and stabilizing a pseudoknot structure at the upstream untranslated region, thus trapping the ribosome into an incomplete translation initiation complex. In the absence of S15, ribosomal protein S1 recognizes rpsO and promotes translation by melting this very pseudoknot. We employ a robust statistical method to detect signatures of positive epistasis between residue site pairs and find that biophysical constraints of translational regulation (S15‐rpsO and S1‐rpsO recognition, S15‐mediated rpsO structural rearrangement, and S1‐mediated melting) are strong predictors of positive epistasis. Transforming the epistatic pairs into a network, we find that signatures of two different, but interconnected regulatory cascades are imprinted in the sequence‐space and can be captured in terms of two dense network modules that are sparsely connected to each other. This network topology further reflects a general principle of how functionally coupled components of biological networks are interconnected. These results depict a model case, where translational regulation drives characteristic residue‐level epistasis—not only between a protein and its own mRNA but also between a protein and the mRNA of an entirely different protein.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.25518</identifier><identifier>PMID: 29679401</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Cascades ; E coli ; Epistasis ; Initiation complex ; Melting ; mRNA ; promoter‐protein coevolution ; Proteins ; protein‐mRNA interaction ; Regulation ; Regulatory sequences ; Ribonucleic acid ; Ribosomal DNA ; ribosomal protein ; Ribosomal protein S1 ; Ribosomal protein S15 ; RNA ; Signatures ; Topology ; Translation ; Translation initiation ; translational regulation</subject><ispartof>Proteins, structure, function, and bioinformatics, 2018-08, Vol.86 (8), p.827-832</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3578-206d01cc90b583767dded78106e860a9758c7523c01320353daab3d681bf97ac3</citedby><cites>FETCH-LOGICAL-c3578-206d01cc90b583767dded78106e860a9758c7523c01320353daab3d681bf97ac3</cites><orcidid>0000-0003-1235-2540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29679401$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mallik, Saurav</creatorcontrib><creatorcontrib>Basu, Sudipto</creatorcontrib><creatorcontrib>Hait, Suman</creatorcontrib><creatorcontrib>Kundu, Sudip</creatorcontrib><title>Translational regulation of ribosomal protein S15 drives characteristic patterns of protein‐mRNA epistasis</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>Do coding and regulatory segments of a gene co‐evolve with each‐other? Seeking answers to this question, here we analyze the case of Escherichia coli ribosomal protein S15, that represses its own translation by specifically binding its messenger RNA (rpsO mRNA) and stabilizing a pseudoknot structure at the upstream untranslated region, thus trapping the ribosome into an incomplete translation initiation complex. In the absence of S15, ribosomal protein S1 recognizes rpsO and promotes translation by melting this very pseudoknot. We employ a robust statistical method to detect signatures of positive epistasis between residue site pairs and find that biophysical constraints of translational regulation (S15‐rpsO and S1‐rpsO recognition, S15‐mediated rpsO structural rearrangement, and S1‐mediated melting) are strong predictors of positive epistasis. Transforming the epistatic pairs into a network, we find that signatures of two different, but interconnected regulatory cascades are imprinted in the sequence‐space and can be captured in terms of two dense network modules that are sparsely connected to each other. This network topology further reflects a general principle of how functionally coupled components of biological networks are interconnected. These results depict a model case, where translational regulation drives characteristic residue‐level epistasis—not only between a protein and its own mRNA but also between a protein and the mRNA of an entirely different protein.</description><subject>Cascades</subject><subject>E coli</subject><subject>Epistasis</subject><subject>Initiation complex</subject><subject>Melting</subject><subject>mRNA</subject><subject>promoter‐protein coevolution</subject><subject>Proteins</subject><subject>protein‐mRNA interaction</subject><subject>Regulation</subject><subject>Regulatory sequences</subject><subject>Ribonucleic acid</subject><subject>Ribosomal DNA</subject><subject>ribosomal protein</subject><subject>Ribosomal protein S1</subject><subject>Ribosomal protein S15</subject><subject>RNA</subject><subject>Signatures</subject><subject>Topology</subject><subject>Translation</subject><subject>Translation initiation</subject><subject>translational regulation</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kUtOwzAQQC0EoqWw4QAoEhuElDKO69heVhU_qaKolHXkOC64yqfYCag7jsAZOQkOKSxYsPLYevPGM4PQMYYhBogu1raqhxGlmO-gPgbBQsBktIv6wDkLCeW0hw6cWwFALEi8j3qRiJkYAe6jfGFl6XJZm6qUeWD1U9NdgmoZWJNWrir8e1tCmzJ4wDTIrHnVLlDP0kpVa2tcbVSwlrWPS9fmbenP949ifjcO9Noj0hl3iPaWMnf6aHsO0OPV5WJyE05n17eT8TRUhDIeRhBngJUSkFJOWMyyTGeMY4g1j0EKRrliNCLKtxkBoSSTMiVZzHG6FEwqMkBnndd_5KXRrk4K45TOc1nqqnFJBBEXIya8fYBO_6CrqrF-FC3FR5wC5tRT5x2lbOWc1ctkbU0h7SbBkLQ7SNqWk-8dePhkq2zSQme_6M_QPYA74M3kevOPKrmfzxad9AsuMJM9</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Mallik, Saurav</creator><creator>Basu, Sudipto</creator><creator>Hait, Suman</creator><creator>Kundu, Sudip</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1235-2540</orcidid></search><sort><creationdate>201808</creationdate><title>Translational regulation of ribosomal protein S15 drives characteristic patterns of protein‐mRNA epistasis</title><author>Mallik, Saurav ; Basu, Sudipto ; Hait, Suman ; Kundu, Sudip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3578-206d01cc90b583767dded78106e860a9758c7523c01320353daab3d681bf97ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cascades</topic><topic>E coli</topic><topic>Epistasis</topic><topic>Initiation complex</topic><topic>Melting</topic><topic>mRNA</topic><topic>promoter‐protein coevolution</topic><topic>Proteins</topic><topic>protein‐mRNA interaction</topic><topic>Regulation</topic><topic>Regulatory sequences</topic><topic>Ribonucleic acid</topic><topic>Ribosomal DNA</topic><topic>ribosomal protein</topic><topic>Ribosomal protein S1</topic><topic>Ribosomal protein S15</topic><topic>RNA</topic><topic>Signatures</topic><topic>Topology</topic><topic>Translation</topic><topic>Translation initiation</topic><topic>translational regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mallik, Saurav</creatorcontrib><creatorcontrib>Basu, Sudipto</creatorcontrib><creatorcontrib>Hait, Suman</creatorcontrib><creatorcontrib>Kundu, Sudip</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mallik, Saurav</au><au>Basu, Sudipto</au><au>Hait, Suman</au><au>Kundu, Sudip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translational regulation of ribosomal protein S15 drives characteristic patterns of protein‐mRNA epistasis</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2018-08</date><risdate>2018</risdate><volume>86</volume><issue>8</issue><spage>827</spage><epage>832</epage><pages>827-832</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>Do coding and regulatory segments of a gene co‐evolve with each‐other? Seeking answers to this question, here we analyze the case of Escherichia coli ribosomal protein S15, that represses its own translation by specifically binding its messenger RNA (rpsO mRNA) and stabilizing a pseudoknot structure at the upstream untranslated region, thus trapping the ribosome into an incomplete translation initiation complex. In the absence of S15, ribosomal protein S1 recognizes rpsO and promotes translation by melting this very pseudoknot. We employ a robust statistical method to detect signatures of positive epistasis between residue site pairs and find that biophysical constraints of translational regulation (S15‐rpsO and S1‐rpsO recognition, S15‐mediated rpsO structural rearrangement, and S1‐mediated melting) are strong predictors of positive epistasis. Transforming the epistatic pairs into a network, we find that signatures of two different, but interconnected regulatory cascades are imprinted in the sequence‐space and can be captured in terms of two dense network modules that are sparsely connected to each other. This network topology further reflects a general principle of how functionally coupled components of biological networks are interconnected. These results depict a model case, where translational regulation drives characteristic residue‐level epistasis—not only between a protein and its own mRNA but also between a protein and the mRNA of an entirely different protein.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29679401</pmid><doi>10.1002/prot.25518</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1235-2540</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-3585 |
ispartof | Proteins, structure, function, and bioinformatics, 2018-08, Vol.86 (8), p.827-832 |
issn | 0887-3585 1097-0134 |
language | eng |
recordid | cdi_proquest_miscellaneous_2028947958 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Cascades E coli Epistasis Initiation complex Melting mRNA promoter‐protein coevolution Proteins protein‐mRNA interaction Regulation Regulatory sequences Ribonucleic acid Ribosomal DNA ribosomal protein Ribosomal protein S1 Ribosomal protein S15 RNA Signatures Topology Translation Translation initiation translational regulation |
title | Translational regulation of ribosomal protein S15 drives characteristic patterns of protein‐mRNA epistasis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A43%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translational%20regulation%20of%20ribosomal%20protein%20S15%20drives%20characteristic%20patterns%20of%20protein%E2%80%90mRNA%20epistasis&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Mallik,%20Saurav&rft.date=2018-08&rft.volume=86&rft.issue=8&rft.spage=827&rft.epage=832&rft.pages=827-832&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.25518&rft_dat=%3Cproquest_cross%3E2028947958%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3578-206d01cc90b583767dded78106e860a9758c7523c01320353daab3d681bf97ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084850185&rft_id=info:pmid/29679401&rfr_iscdi=true |