Loading…

Translational regulation of ribosomal protein S15 drives characteristic patterns of protein‐mRNA epistasis

Do coding and regulatory segments of a gene co‐evolve with each‐other? Seeking answers to this question, here we analyze the case of Escherichia coli ribosomal protein S15, that represses its own translation by specifically binding its messenger RNA (rpsO mRNA) and stabilizing a pseudoknot structure...

Full description

Saved in:
Bibliographic Details
Published in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2018-08, Vol.86 (8), p.827-832
Main Authors: Mallik, Saurav, Basu, Sudipto, Hait, Suman, Kundu, Sudip
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3578-206d01cc90b583767dded78106e860a9758c7523c01320353daab3d681bf97ac3
cites cdi_FETCH-LOGICAL-c3578-206d01cc90b583767dded78106e860a9758c7523c01320353daab3d681bf97ac3
container_end_page 832
container_issue 8
container_start_page 827
container_title Proteins, structure, function, and bioinformatics
container_volume 86
creator Mallik, Saurav
Basu, Sudipto
Hait, Suman
Kundu, Sudip
description Do coding and regulatory segments of a gene co‐evolve with each‐other? Seeking answers to this question, here we analyze the case of Escherichia coli ribosomal protein S15, that represses its own translation by specifically binding its messenger RNA (rpsO mRNA) and stabilizing a pseudoknot structure at the upstream untranslated region, thus trapping the ribosome into an incomplete translation initiation complex. In the absence of S15, ribosomal protein S1 recognizes rpsO and promotes translation by melting this very pseudoknot. We employ a robust statistical method to detect signatures of positive epistasis between residue site pairs and find that biophysical constraints of translational regulation (S15‐rpsO and S1‐rpsO recognition, S15‐mediated rpsO structural rearrangement, and S1‐mediated melting) are strong predictors of positive epistasis. Transforming the epistatic pairs into a network, we find that signatures of two different, but interconnected regulatory cascades are imprinted in the sequence‐space and can be captured in terms of two dense network modules that are sparsely connected to each other. This network topology further reflects a general principle of how functionally coupled components of biological networks are interconnected. These results depict a model case, where translational regulation drives characteristic residue‐level epistasis—not only between a protein and its own mRNA but also between a protein and the mRNA of an entirely different protein.
doi_str_mv 10.1002/prot.25518
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2028947958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2028947958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3578-206d01cc90b583767dded78106e860a9758c7523c01320353daab3d681bf97ac3</originalsourceid><addsrcrecordid>eNp9kUtOwzAQQC0EoqWw4QAoEhuElDKO69heVhU_qaKolHXkOC64yqfYCag7jsAZOQkOKSxYsPLYevPGM4PQMYYhBogu1raqhxGlmO-gPgbBQsBktIv6wDkLCeW0hw6cWwFALEi8j3qRiJkYAe6jfGFl6XJZm6qUeWD1U9NdgmoZWJNWrir8e1tCmzJ4wDTIrHnVLlDP0kpVa2tcbVSwlrWPS9fmbenP949ifjcO9Noj0hl3iPaWMnf6aHsO0OPV5WJyE05n17eT8TRUhDIeRhBngJUSkFJOWMyyTGeMY4g1j0EKRrliNCLKtxkBoSSTMiVZzHG6FEwqMkBnndd_5KXRrk4K45TOc1nqqnFJBBEXIya8fYBO_6CrqrF-FC3FR5wC5tRT5x2lbOWc1ctkbU0h7SbBkLQ7SNqWk-8dePhkq2zSQme_6M_QPYA74M3kevOPKrmfzxad9AsuMJM9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084850185</pqid></control><display><type>article</type><title>Translational regulation of ribosomal protein S15 drives characteristic patterns of protein‐mRNA epistasis</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Mallik, Saurav ; Basu, Sudipto ; Hait, Suman ; Kundu, Sudip</creator><creatorcontrib>Mallik, Saurav ; Basu, Sudipto ; Hait, Suman ; Kundu, Sudip</creatorcontrib><description>Do coding and regulatory segments of a gene co‐evolve with each‐other? Seeking answers to this question, here we analyze the case of Escherichia coli ribosomal protein S15, that represses its own translation by specifically binding its messenger RNA (rpsO mRNA) and stabilizing a pseudoknot structure at the upstream untranslated region, thus trapping the ribosome into an incomplete translation initiation complex. In the absence of S15, ribosomal protein S1 recognizes rpsO and promotes translation by melting this very pseudoknot. We employ a robust statistical method to detect signatures of positive epistasis between residue site pairs and find that biophysical constraints of translational regulation (S15‐rpsO and S1‐rpsO recognition, S15‐mediated rpsO structural rearrangement, and S1‐mediated melting) are strong predictors of positive epistasis. Transforming the epistatic pairs into a network, we find that signatures of two different, but interconnected regulatory cascades are imprinted in the sequence‐space and can be captured in terms of two dense network modules that are sparsely connected to each other. This network topology further reflects a general principle of how functionally coupled components of biological networks are interconnected. These results depict a model case, where translational regulation drives characteristic residue‐level epistasis—not only between a protein and its own mRNA but also between a protein and the mRNA of an entirely different protein.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.25518</identifier><identifier>PMID: 29679401</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Cascades ; E coli ; Epistasis ; Initiation complex ; Melting ; mRNA ; promoter‐protein coevolution ; Proteins ; protein‐mRNA interaction ; Regulation ; Regulatory sequences ; Ribonucleic acid ; Ribosomal DNA ; ribosomal protein ; Ribosomal protein S1 ; Ribosomal protein S15 ; RNA ; Signatures ; Topology ; Translation ; Translation initiation ; translational regulation</subject><ispartof>Proteins, structure, function, and bioinformatics, 2018-08, Vol.86 (8), p.827-832</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3578-206d01cc90b583767dded78106e860a9758c7523c01320353daab3d681bf97ac3</citedby><cites>FETCH-LOGICAL-c3578-206d01cc90b583767dded78106e860a9758c7523c01320353daab3d681bf97ac3</cites><orcidid>0000-0003-1235-2540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29679401$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mallik, Saurav</creatorcontrib><creatorcontrib>Basu, Sudipto</creatorcontrib><creatorcontrib>Hait, Suman</creatorcontrib><creatorcontrib>Kundu, Sudip</creatorcontrib><title>Translational regulation of ribosomal protein S15 drives characteristic patterns of protein‐mRNA epistasis</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>Do coding and regulatory segments of a gene co‐evolve with each‐other? Seeking answers to this question, here we analyze the case of Escherichia coli ribosomal protein S15, that represses its own translation by specifically binding its messenger RNA (rpsO mRNA) and stabilizing a pseudoknot structure at the upstream untranslated region, thus trapping the ribosome into an incomplete translation initiation complex. In the absence of S15, ribosomal protein S1 recognizes rpsO and promotes translation by melting this very pseudoknot. We employ a robust statistical method to detect signatures of positive epistasis between residue site pairs and find that biophysical constraints of translational regulation (S15‐rpsO and S1‐rpsO recognition, S15‐mediated rpsO structural rearrangement, and S1‐mediated melting) are strong predictors of positive epistasis. Transforming the epistatic pairs into a network, we find that signatures of two different, but interconnected regulatory cascades are imprinted in the sequence‐space and can be captured in terms of two dense network modules that are sparsely connected to each other. This network topology further reflects a general principle of how functionally coupled components of biological networks are interconnected. These results depict a model case, where translational regulation drives characteristic residue‐level epistasis—not only between a protein and its own mRNA but also between a protein and the mRNA of an entirely different protein.</description><subject>Cascades</subject><subject>E coli</subject><subject>Epistasis</subject><subject>Initiation complex</subject><subject>Melting</subject><subject>mRNA</subject><subject>promoter‐protein coevolution</subject><subject>Proteins</subject><subject>protein‐mRNA interaction</subject><subject>Regulation</subject><subject>Regulatory sequences</subject><subject>Ribonucleic acid</subject><subject>Ribosomal DNA</subject><subject>ribosomal protein</subject><subject>Ribosomal protein S1</subject><subject>Ribosomal protein S15</subject><subject>RNA</subject><subject>Signatures</subject><subject>Topology</subject><subject>Translation</subject><subject>Translation initiation</subject><subject>translational regulation</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kUtOwzAQQC0EoqWw4QAoEhuElDKO69heVhU_qaKolHXkOC64yqfYCag7jsAZOQkOKSxYsPLYevPGM4PQMYYhBogu1raqhxGlmO-gPgbBQsBktIv6wDkLCeW0hw6cWwFALEi8j3qRiJkYAe6jfGFl6XJZm6qUeWD1U9NdgmoZWJNWrir8e1tCmzJ4wDTIrHnVLlDP0kpVa2tcbVSwlrWPS9fmbenP949ifjcO9Noj0hl3iPaWMnf6aHsO0OPV5WJyE05n17eT8TRUhDIeRhBngJUSkFJOWMyyTGeMY4g1j0EKRrliNCLKtxkBoSSTMiVZzHG6FEwqMkBnndd_5KXRrk4K45TOc1nqqnFJBBEXIya8fYBO_6CrqrF-FC3FR5wC5tRT5x2lbOWc1ctkbU0h7SbBkLQ7SNqWk-8dePhkq2zSQme_6M_QPYA74M3kevOPKrmfzxad9AsuMJM9</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Mallik, Saurav</creator><creator>Basu, Sudipto</creator><creator>Hait, Suman</creator><creator>Kundu, Sudip</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1235-2540</orcidid></search><sort><creationdate>201808</creationdate><title>Translational regulation of ribosomal protein S15 drives characteristic patterns of protein‐mRNA epistasis</title><author>Mallik, Saurav ; Basu, Sudipto ; Hait, Suman ; Kundu, Sudip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3578-206d01cc90b583767dded78106e860a9758c7523c01320353daab3d681bf97ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cascades</topic><topic>E coli</topic><topic>Epistasis</topic><topic>Initiation complex</topic><topic>Melting</topic><topic>mRNA</topic><topic>promoter‐protein coevolution</topic><topic>Proteins</topic><topic>protein‐mRNA interaction</topic><topic>Regulation</topic><topic>Regulatory sequences</topic><topic>Ribonucleic acid</topic><topic>Ribosomal DNA</topic><topic>ribosomal protein</topic><topic>Ribosomal protein S1</topic><topic>Ribosomal protein S15</topic><topic>RNA</topic><topic>Signatures</topic><topic>Topology</topic><topic>Translation</topic><topic>Translation initiation</topic><topic>translational regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mallik, Saurav</creatorcontrib><creatorcontrib>Basu, Sudipto</creatorcontrib><creatorcontrib>Hait, Suman</creatorcontrib><creatorcontrib>Kundu, Sudip</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mallik, Saurav</au><au>Basu, Sudipto</au><au>Hait, Suman</au><au>Kundu, Sudip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translational regulation of ribosomal protein S15 drives characteristic patterns of protein‐mRNA epistasis</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2018-08</date><risdate>2018</risdate><volume>86</volume><issue>8</issue><spage>827</spage><epage>832</epage><pages>827-832</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>Do coding and regulatory segments of a gene co‐evolve with each‐other? Seeking answers to this question, here we analyze the case of Escherichia coli ribosomal protein S15, that represses its own translation by specifically binding its messenger RNA (rpsO mRNA) and stabilizing a pseudoknot structure at the upstream untranslated region, thus trapping the ribosome into an incomplete translation initiation complex. In the absence of S15, ribosomal protein S1 recognizes rpsO and promotes translation by melting this very pseudoknot. We employ a robust statistical method to detect signatures of positive epistasis between residue site pairs and find that biophysical constraints of translational regulation (S15‐rpsO and S1‐rpsO recognition, S15‐mediated rpsO structural rearrangement, and S1‐mediated melting) are strong predictors of positive epistasis. Transforming the epistatic pairs into a network, we find that signatures of two different, but interconnected regulatory cascades are imprinted in the sequence‐space and can be captured in terms of two dense network modules that are sparsely connected to each other. This network topology further reflects a general principle of how functionally coupled components of biological networks are interconnected. These results depict a model case, where translational regulation drives characteristic residue‐level epistasis—not only between a protein and its own mRNA but also between a protein and the mRNA of an entirely different protein.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29679401</pmid><doi>10.1002/prot.25518</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1235-2540</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 2018-08, Vol.86 (8), p.827-832
issn 0887-3585
1097-0134
language eng
recordid cdi_proquest_miscellaneous_2028947958
source Wiley-Blackwell Read & Publish Collection
subjects Cascades
E coli
Epistasis
Initiation complex
Melting
mRNA
promoter‐protein coevolution
Proteins
protein‐mRNA interaction
Regulation
Regulatory sequences
Ribonucleic acid
Ribosomal DNA
ribosomal protein
Ribosomal protein S1
Ribosomal protein S15
RNA
Signatures
Topology
Translation
Translation initiation
translational regulation
title Translational regulation of ribosomal protein S15 drives characteristic patterns of protein‐mRNA epistasis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A43%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translational%20regulation%20of%20ribosomal%20protein%20S15%20drives%20characteristic%20patterns%20of%20protein%E2%80%90mRNA%20epistasis&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Mallik,%20Saurav&rft.date=2018-08&rft.volume=86&rft.issue=8&rft.spage=827&rft.epage=832&rft.pages=827-832&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.25518&rft_dat=%3Cproquest_cross%3E2028947958%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3578-206d01cc90b583767dded78106e860a9758c7523c01320353daab3d681bf97ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084850185&rft_id=info:pmid/29679401&rfr_iscdi=true